Flink on YARN模式下TaskManager的内存分配探究

2024-09-06 19:18

本文主要是介绍Flink on YARN模式下TaskManager的内存分配探究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

我们使用如下的参数提交了Flink on YARN作业(per-job模式)。

/opt/flink-1.9.0/bin/flink run \
--detached \
--jobmanager yarn-cluster \
--yarnname "x.y.z" \
--yarnjobManagerMemory 2048 \
--yarntaskManagerMemory 4096 \
--yarnslots 2 \
--parallelism 20 \
--class x.y.z \
xyz-1.0.jar

该作业启动了10个TaskManager,并正常运行。来到该任务的Web界面,随便打开一个TaskManager页面,看看它的内存情况。

可见,虽然我们在参数中设置了TaskManager的内存为4GB大,但是上图显示的JVM堆大小只有2.47GB,另外还有一项“Flink Managed Memory”为1.78GB。在用VisualVM监控YarnTaskExecutorRunner时,会发现其JVM内存参数被如下设置:

显然Xmx+MaxDirectMemorySize才是我们在启动参数中设定的TM内存大小(4GB)。那么为什么会这样设置?“Flink Managed Memory”又是什么鬼?下面就来弄懂这些问题。

TaskManager内存布局如下图所示。

为了减少object overhead,Flink主要采用序列化的方式存储各种对象。序列化存储的最小单位叫做MemorySegment,底层为字节数组,大小由taskmanager.memory.segment-size参数指定,默认32KB大。下面分别介绍各块内存:

  • 网络缓存(Network Buffer):用于网络传输及与网络相关的动作(shuffle、广播等)的内存块,由MemorySegment组成。从Flink 1.5版本之后,网络缓存固定分配在堆外,这样可以充分利用零拷贝等技术。与它相关的三个参数及我们的设定值如下:

# 网络缓存占TM内存的默认比例,默认0.1
taskmanager.network.memory.fraction: 0.15
# 网络缓存的最小值和最大值 ,默认64MB和1GB
taskmanager.network.memory.min: 128mb
taskmanager.network.memory.max: 1gb
  • 托管内存(Flink Managed Memory):用于所有Flink内部算子逻辑的内存分配,以及中间数据的存储,同样由MemorySegment组成,并通过Flink的MemoryManager组件管理。它默认在堆内分配,如果开启堆外内存分配的开关,也可以在堆内、堆外同时分配。与它相关的两个参数如下:

# 堆内托管内存占TM堆内内存的比例,默认0.7
taskmanager.memory.fraction: 0.7
# 是否允许分配堆外托管内存,默认不允许
taskmanager.memory.off-heap: false

由此也可见,Flink的内存管理不像Spark一样区分Storage和Execution内存,而是直接合二为一,更加灵活。

  • 空闲内存(Free):虽然名为空闲,但实际上是存储用户代码和数据结构的,固定在堆内,可以理解为堆内内存除去托管内存后剩下的那部分。

如果我们想知道文章开头的问题中各块内存的大小是怎么来的,最好的办法自然是去读源码。下面以Flink 1.9.0源码为例来探索。

TaskManager内存分配逻辑

YARN per-job集群的启动入口位于o.a.f.yarn.YarnClusterDescriptor类中。

    public ClusterClient<ApplicationId> deployJobCluster(ClusterSpecification clusterSpecification,JobGraph jobGraph,boolean detached) throws ClusterDeploymentException {// this is required because the slots are allocated lazilyjobGraph.setAllowQueuedScheduling(true);try {return deployInternal(clusterSpecification,"Flink per-job cluster",getYarnJobClusterEntrypoint(),jobGraph,detached);} catch (Exception e) {throw new ClusterDeploymentException("Could not deploy Yarn job cluster.", e);}}

其中,ClusterSpecification对象持有该集群的4个基本参数:JobManager内存大小、TaskManager内存大小、TaskManager数量、每个TaskManager的slot数。而deployInternal()方法在开头调用了o.a.f.yarn.AbstractYarnClusterDescriptor抽象类的validateClusterSpecification()方法,用于校验ClusterSpecification是否合法。

    private void validateClusterSpecification(ClusterSpecification clusterSpecification) throws FlinkException {try {final long taskManagerMemorySize = clusterSpecification.getTaskManagerMemoryMB();// We do the validation by calling the calculation methods here// Internally these methods will check whether the cluster can be started with the provided// ClusterSpecification and the configured memory requirementsfinal long cutoff = ContaineredTaskManagerParameters.calculateCutoffMB(flinkConfiguration, taskManagerMemorySize);TaskManagerServices.calculateHeapSizeMB(taskManagerMemorySize - cutoff, flinkConfiguration);} catch (IllegalArgumentException iae) {throw new FlinkException("Cannot fulfill the minimum memory requirements with the provided " +"cluster specification. Please increase the memory of the cluster.", iae);}}

ClusterSpecification.getTaskManagerMemoryMB()方法返回的就是-ytm/--yarntaskManagerMemory参数设定的内存,最终反映在Flink代码中都是taskmanager.heap.size配置项的值。

接下来首先调用ContaineredTaskManagerParameters.calculateCutoffMB()方法,它负责计算一个承载TM的YARN Container需要预留多少内存给TM之外的逻辑来使用。

    public static long calculateCutoffMB(Configuration config, long containerMemoryMB) {Preconditions.checkArgument(containerMemoryMB > 0);// (1) check cutoff ratiofinal float memoryCutoffRatio = config.getFloat(ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_RATIO);if (memoryCutoffRatio >= 1 || memoryCutoffRatio <= 0) {throw new IllegalArgumentException("The configuration value '"+ ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_RATIO.key() + "' must be between 0 and 1. Value given="+ memoryCutoffRatio);}// (2) check min cutoff valuefinal int minCutoff = config.getInteger(ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_MIN);if (minCutoff >= containerMemoryMB) {throw new IllegalArgumentException("The configuration value '"+ ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_MIN.key() + "'='" + minCutoff+ "' is larger than the total container memory " + containerMemoryMB);}// (3) check between heap and off-heaplong cutoff = (long) (containerMemoryMB * memoryCutoffRatio);if (cutoff < minCutoff) {cutoff = minCutoff;}return cutoff;}

该方法的执行流程如下:

  1. 获取containerized.heap-cutoff-ratio参数,它代表Container预留的非TM内存占设定的TM内存的比例,默认值0.25;

  2. 获取containerized.heap-cutoff-min参数,它代表Container预留的非TM内存的最小值,默认值600MB;

  3. 按比例计算预留内存,并保证结果不小于最小值。

由此可见,在Flink on YARN时,我们设定的TM内存实际上是Container的内存。也就是说,一个TM能利用的总内存(包含堆内和堆外)是:

tm_total_memory = taskmanager.heap.size - max[containerized.heap-cutoff-min, taskmanager.heap.size * containerized.heap-cutoff-ratio]

用文章开头给的参数实际计算一下:

tm_total_memory = 4096 - max[600, 4096 * 0.25] = 3072

接下来看TaskManagerServices.calculateHeapSizeMB()方法。

    public static long calculateHeapSizeMB(long totalJavaMemorySizeMB, Configuration config) {Preconditions.checkArgument(totalJavaMemorySizeMB > 0);// all values below here are in bytesfinal long totalProcessMemory = megabytesToBytes(totalJavaMemorySizeMB);final long networkReservedMemory = getReservedNetworkMemory(config, totalProcessMemory);final long heapAndManagedMemory = totalProcessMemory - networkReservedMemory;if (config.getBoolean(TaskManagerOptions.MEMORY_OFF_HEAP)) {final long managedMemorySize = getManagedMemoryFromHeapAndManaged(config, heapAndManagedMemory);ConfigurationParserUtils.checkConfigParameter(managedMemorySize < heapAndManagedMemory, managedMemorySize,TaskManagerOptions.MANAGED_MEMORY_SIZE.key(),"Managed memory size too large for " + (networkReservedMemory >> 20) +" MB network buffer memory and a total of " + totalJavaMemorySizeMB +" MB JVM memory");return bytesToMegabytes(heapAndManagedMemory - managedMemorySize);}else {return bytesToMegabytes(heapAndManagedMemory);}}

为了简化问题及符合我们的实际应用,就不考虑开启堆外托管内存的情况了。这里涉及到了计算Network buffer大小的方法```

NettyShuffleEnvironmentConfiguration.calculateNetworkBufferMemory()。public static long calculateNetworkBufferMemory(long totalJavaMemorySize, Configuration config) {final int segmentSize = ConfigurationParserUtils.getPageSize(config);final long networkBufBytes;if (hasNewNetworkConfig(config)) {float networkBufFraction = config.getFloat(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_FRACTION);long networkBufSize = (long) (totalJavaMemorySize * networkBufFraction);networkBufBytes = calculateNewNetworkBufferMemory(config, networkBufSize, totalJavaMemorySize);} else {// use old (deprecated) network buffers parameter// 旧版逻辑,不再看了}return networkBufBytes;}private static long calculateNewNetworkBufferMemory(Configuration config, long networkBufSize, long maxJvmHeapMemory) {float networkBufFraction = config.getFloat(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_FRACTION);long networkBufMin = MemorySize.parse(config.getString(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_MIN)).getBytes();long networkBufMax = MemorySize.parse(config.getString(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_MAX)).getBytes();int pageSize = ConfigurationParserUtils.getPageSize(config);checkNewNetworkConfig(pageSize, networkBufFraction, networkBufMin, networkBufMax);long networkBufBytes = Math.min(networkBufMax, Math.max(networkBufMin, networkBufSize));ConfigurationParserUtils.checkConfigParameter(/*...*/);return networkBufBytes;}

由此可见,网络缓存的大小这样确定:

network_buffer_memory = min[taskmanager.network.memory.max, max(askmanager.network.memory.min, tm_total_memory * taskmanager.network.memory.fraction)]

代入数值:

network_buffer_memory = min[1024, max(128, 3072 * 0.15)] = 460.8

也就是说,TM真正使用的堆内内存为:

tm_heap_memory = tm_total_memory - network_buffer_memory = 3072 - 460.8 ≈ 2611

这完全符合VisualVM截图中的-Xms/-Xmx设定。

同理,可以看一下TaskManager UI中的网络缓存MemorySegment计数。

通过计算得知,网络缓存的实际值与上面算出来的network_buffer_memory值是非常接近的。

那么堆内托管内存的值是怎么计算出来的呢?前面提到了托管内存由MemoryManager管理,来看看TaskManagerServices.createMemoryManager()方法,它用设定好的参数来初始化一个MemoryManager。

private static MemoryManager createMemoryManager(TaskManagerServicesConfiguration taskManagerServicesConfiguration) throws Exception {long configuredMemory = taskManagerServicesConfiguration.getConfiguredMemory();MemoryType memType = taskManagerServicesConfiguration.getMemoryType();final long memorySize;boolean preAllocateMemory = taskManagerServicesConfiguration.isPreAllocateMemory();if (configuredMemory > 0) {if (preAllocateMemory) {LOG.info(/*...*/);} else {LOG.info(/*...*/);}memorySize = configuredMemory << 20; // megabytes to bytes} else {// similar to #calculateNetworkBufferMemory(TaskManagerServicesConfiguration tmConfig)float memoryFraction = taskManagerServicesConfiguration.getMemoryFraction();if (memType == MemoryType.HEAP) {long freeHeapMemoryWithDefrag = taskManagerServicesConfiguration.getFreeHeapMemoryWithDefrag();// network buffers allocated off-heap -> use memoryFraction of the available heap:long relativeMemSize = (long) (freeHeapMemoryWithDefrag * memoryFraction);if (preAllocateMemory) {LOG.info(/*...*/);} else {LOG.info(/*...*/);}memorySize = relativeMemSize;} else if (memType == MemoryType.OFF_HEAP) {long maxJvmHeapMemory = taskManagerServicesConfiguration.getMaxJvmHeapMemory();// The maximum heap memory has been adjusted according to the fraction (see// calculateHeapSizeMB(long totalJavaMemorySizeMB, Configuration config)), i.e.// maxJvmHeap = jvmTotalNoNet - jvmTotalNoNet * memoryFraction = jvmTotalNoNet * (1 - memoryFraction)// directMemorySize = jvmTotalNoNet * memoryFractionlong directMemorySize = (long) (maxJvmHeapMemory / (1.0 - memoryFraction) * memoryFraction);if (preAllocateMemory) {LOG.info(/*...*/);} else {LOG.info(/*...*/);}memorySize = directMemorySize;} else {throw new RuntimeException("No supported memory type detected.");}}// now start the memory managerfinal MemoryManager memoryManager;try {memoryManager = new MemoryManager(memorySize,taskManagerServicesConfiguration.getNumberOfSlots(),taskManagerServicesConfiguration.getPageSize(),memType,preAllocateMemory);} catch (OutOfMemoryError e) {// ...}return memoryManager;}

简要叙述一下流程:

  1. 获取taskmanager.memory.size参数,用来确定托管内存的绝对大小;

  2. 如果taskmanager.memory.size未设置,就继续获取前面提到过的taskmanager.memory.fraction参数;

  3. 只考虑堆内内存的情况,调用TaskManagerServicesConfiguration.getFreeHeapMemoryWithDefrag()方法,先主动触发GC,然后获取可用的堆内存量。可见,如果没有意外,程序初始化时该方法返回的值与前文的-Xms/-Xmx应该相同;

  4. 计算托管内存大小和其他参数,返回MemoryManager实例。

一般来讲我们都不会简单粗暴地设置taskmanager.memory.size。所以:

flink_managed_memory = tm_heap_memory * taskmanager.memory.fraction = 2611 * 0.7 ≈ 1827

这就是TaskManager UI中显示的托管内存大小了。

业务和管理决定上限,技术决定下限

脱离ZooKeeper依赖的Kafka Controller Quorum(KRaft)机制浅析

背景调查时在调查些什么?

缓存之王 | Redis最佳实践&开发规范&FAQ

【大数据技术与架构】2021年大数据面试进阶系列系统总结

这篇关于Flink on YARN模式下TaskManager的内存分配探究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1142886

相关文章

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

nginx upstream六种方式分配小结

《nginxupstream六种方式分配小结》本文主要介绍了nginxupstream六种方式分配小结,包括轮询、加权轮询、IP哈希、公平轮询、URL哈希和备份服务器,具有一定的参考价格,感兴趣的可... 目录1 轮询(默认)2 weight3 ip_hash4 fair(第三方)5 url_hash(第三

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内