Flink on YARN模式下TaskManager的内存分配探究

2024-09-06 19:18

本文主要是介绍Flink on YARN模式下TaskManager的内存分配探究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

我们使用如下的参数提交了Flink on YARN作业(per-job模式)。

/opt/flink-1.9.0/bin/flink run \
--detached \
--jobmanager yarn-cluster \
--yarnname "x.y.z" \
--yarnjobManagerMemory 2048 \
--yarntaskManagerMemory 4096 \
--yarnslots 2 \
--parallelism 20 \
--class x.y.z \
xyz-1.0.jar

该作业启动了10个TaskManager,并正常运行。来到该任务的Web界面,随便打开一个TaskManager页面,看看它的内存情况。

可见,虽然我们在参数中设置了TaskManager的内存为4GB大,但是上图显示的JVM堆大小只有2.47GB,另外还有一项“Flink Managed Memory”为1.78GB。在用VisualVM监控YarnTaskExecutorRunner时,会发现其JVM内存参数被如下设置:

显然Xmx+MaxDirectMemorySize才是我们在启动参数中设定的TM内存大小(4GB)。那么为什么会这样设置?“Flink Managed Memory”又是什么鬼?下面就来弄懂这些问题。

TaskManager内存布局如下图所示。

为了减少object overhead,Flink主要采用序列化的方式存储各种对象。序列化存储的最小单位叫做MemorySegment,底层为字节数组,大小由taskmanager.memory.segment-size参数指定,默认32KB大。下面分别介绍各块内存:

  • 网络缓存(Network Buffer):用于网络传输及与网络相关的动作(shuffle、广播等)的内存块,由MemorySegment组成。从Flink 1.5版本之后,网络缓存固定分配在堆外,这样可以充分利用零拷贝等技术。与它相关的三个参数及我们的设定值如下:

# 网络缓存占TM内存的默认比例,默认0.1
taskmanager.network.memory.fraction: 0.15
# 网络缓存的最小值和最大值 ,默认64MB和1GB
taskmanager.network.memory.min: 128mb
taskmanager.network.memory.max: 1gb
  • 托管内存(Flink Managed Memory):用于所有Flink内部算子逻辑的内存分配,以及中间数据的存储,同样由MemorySegment组成,并通过Flink的MemoryManager组件管理。它默认在堆内分配,如果开启堆外内存分配的开关,也可以在堆内、堆外同时分配。与它相关的两个参数如下:

# 堆内托管内存占TM堆内内存的比例,默认0.7
taskmanager.memory.fraction: 0.7
# 是否允许分配堆外托管内存,默认不允许
taskmanager.memory.off-heap: false

由此也可见,Flink的内存管理不像Spark一样区分Storage和Execution内存,而是直接合二为一,更加灵活。

  • 空闲内存(Free):虽然名为空闲,但实际上是存储用户代码和数据结构的,固定在堆内,可以理解为堆内内存除去托管内存后剩下的那部分。

如果我们想知道文章开头的问题中各块内存的大小是怎么来的,最好的办法自然是去读源码。下面以Flink 1.9.0源码为例来探索。

TaskManager内存分配逻辑

YARN per-job集群的启动入口位于o.a.f.yarn.YarnClusterDescriptor类中。

    public ClusterClient<ApplicationId> deployJobCluster(ClusterSpecification clusterSpecification,JobGraph jobGraph,boolean detached) throws ClusterDeploymentException {// this is required because the slots are allocated lazilyjobGraph.setAllowQueuedScheduling(true);try {return deployInternal(clusterSpecification,"Flink per-job cluster",getYarnJobClusterEntrypoint(),jobGraph,detached);} catch (Exception e) {throw new ClusterDeploymentException("Could not deploy Yarn job cluster.", e);}}

其中,ClusterSpecification对象持有该集群的4个基本参数:JobManager内存大小、TaskManager内存大小、TaskManager数量、每个TaskManager的slot数。而deployInternal()方法在开头调用了o.a.f.yarn.AbstractYarnClusterDescriptor抽象类的validateClusterSpecification()方法,用于校验ClusterSpecification是否合法。

    private void validateClusterSpecification(ClusterSpecification clusterSpecification) throws FlinkException {try {final long taskManagerMemorySize = clusterSpecification.getTaskManagerMemoryMB();// We do the validation by calling the calculation methods here// Internally these methods will check whether the cluster can be started with the provided// ClusterSpecification and the configured memory requirementsfinal long cutoff = ContaineredTaskManagerParameters.calculateCutoffMB(flinkConfiguration, taskManagerMemorySize);TaskManagerServices.calculateHeapSizeMB(taskManagerMemorySize - cutoff, flinkConfiguration);} catch (IllegalArgumentException iae) {throw new FlinkException("Cannot fulfill the minimum memory requirements with the provided " +"cluster specification. Please increase the memory of the cluster.", iae);}}

ClusterSpecification.getTaskManagerMemoryMB()方法返回的就是-ytm/--yarntaskManagerMemory参数设定的内存,最终反映在Flink代码中都是taskmanager.heap.size配置项的值。

接下来首先调用ContaineredTaskManagerParameters.calculateCutoffMB()方法,它负责计算一个承载TM的YARN Container需要预留多少内存给TM之外的逻辑来使用。

    public static long calculateCutoffMB(Configuration config, long containerMemoryMB) {Preconditions.checkArgument(containerMemoryMB > 0);// (1) check cutoff ratiofinal float memoryCutoffRatio = config.getFloat(ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_RATIO);if (memoryCutoffRatio >= 1 || memoryCutoffRatio <= 0) {throw new IllegalArgumentException("The configuration value '"+ ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_RATIO.key() + "' must be between 0 and 1. Value given="+ memoryCutoffRatio);}// (2) check min cutoff valuefinal int minCutoff = config.getInteger(ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_MIN);if (minCutoff >= containerMemoryMB) {throw new IllegalArgumentException("The configuration value '"+ ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_MIN.key() + "'='" + minCutoff+ "' is larger than the total container memory " + containerMemoryMB);}// (3) check between heap and off-heaplong cutoff = (long) (containerMemoryMB * memoryCutoffRatio);if (cutoff < minCutoff) {cutoff = minCutoff;}return cutoff;}

该方法的执行流程如下:

  1. 获取containerized.heap-cutoff-ratio参数,它代表Container预留的非TM内存占设定的TM内存的比例,默认值0.25;

  2. 获取containerized.heap-cutoff-min参数,它代表Container预留的非TM内存的最小值,默认值600MB;

  3. 按比例计算预留内存,并保证结果不小于最小值。

由此可见,在Flink on YARN时,我们设定的TM内存实际上是Container的内存。也就是说,一个TM能利用的总内存(包含堆内和堆外)是:

tm_total_memory = taskmanager.heap.size - max[containerized.heap-cutoff-min, taskmanager.heap.size * containerized.heap-cutoff-ratio]

用文章开头给的参数实际计算一下:

tm_total_memory = 4096 - max[600, 4096 * 0.25] = 3072

接下来看TaskManagerServices.calculateHeapSizeMB()方法。

    public static long calculateHeapSizeMB(long totalJavaMemorySizeMB, Configuration config) {Preconditions.checkArgument(totalJavaMemorySizeMB > 0);// all values below here are in bytesfinal long totalProcessMemory = megabytesToBytes(totalJavaMemorySizeMB);final long networkReservedMemory = getReservedNetworkMemory(config, totalProcessMemory);final long heapAndManagedMemory = totalProcessMemory - networkReservedMemory;if (config.getBoolean(TaskManagerOptions.MEMORY_OFF_HEAP)) {final long managedMemorySize = getManagedMemoryFromHeapAndManaged(config, heapAndManagedMemory);ConfigurationParserUtils.checkConfigParameter(managedMemorySize < heapAndManagedMemory, managedMemorySize,TaskManagerOptions.MANAGED_MEMORY_SIZE.key(),"Managed memory size too large for " + (networkReservedMemory >> 20) +" MB network buffer memory and a total of " + totalJavaMemorySizeMB +" MB JVM memory");return bytesToMegabytes(heapAndManagedMemory - managedMemorySize);}else {return bytesToMegabytes(heapAndManagedMemory);}}

为了简化问题及符合我们的实际应用,就不考虑开启堆外托管内存的情况了。这里涉及到了计算Network buffer大小的方法```

NettyShuffleEnvironmentConfiguration.calculateNetworkBufferMemory()。public static long calculateNetworkBufferMemory(long totalJavaMemorySize, Configuration config) {final int segmentSize = ConfigurationParserUtils.getPageSize(config);final long networkBufBytes;if (hasNewNetworkConfig(config)) {float networkBufFraction = config.getFloat(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_FRACTION);long networkBufSize = (long) (totalJavaMemorySize * networkBufFraction);networkBufBytes = calculateNewNetworkBufferMemory(config, networkBufSize, totalJavaMemorySize);} else {// use old (deprecated) network buffers parameter// 旧版逻辑,不再看了}return networkBufBytes;}private static long calculateNewNetworkBufferMemory(Configuration config, long networkBufSize, long maxJvmHeapMemory) {float networkBufFraction = config.getFloat(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_FRACTION);long networkBufMin = MemorySize.parse(config.getString(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_MIN)).getBytes();long networkBufMax = MemorySize.parse(config.getString(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_MAX)).getBytes();int pageSize = ConfigurationParserUtils.getPageSize(config);checkNewNetworkConfig(pageSize, networkBufFraction, networkBufMin, networkBufMax);long networkBufBytes = Math.min(networkBufMax, Math.max(networkBufMin, networkBufSize));ConfigurationParserUtils.checkConfigParameter(/*...*/);return networkBufBytes;}

由此可见,网络缓存的大小这样确定:

network_buffer_memory = min[taskmanager.network.memory.max, max(askmanager.network.memory.min, tm_total_memory * taskmanager.network.memory.fraction)]

代入数值:

network_buffer_memory = min[1024, max(128, 3072 * 0.15)] = 460.8

也就是说,TM真正使用的堆内内存为:

tm_heap_memory = tm_total_memory - network_buffer_memory = 3072 - 460.8 ≈ 2611

这完全符合VisualVM截图中的-Xms/-Xmx设定。

同理,可以看一下TaskManager UI中的网络缓存MemorySegment计数。

通过计算得知,网络缓存的实际值与上面算出来的network_buffer_memory值是非常接近的。

那么堆内托管内存的值是怎么计算出来的呢?前面提到了托管内存由MemoryManager管理,来看看TaskManagerServices.createMemoryManager()方法,它用设定好的参数来初始化一个MemoryManager。

private static MemoryManager createMemoryManager(TaskManagerServicesConfiguration taskManagerServicesConfiguration) throws Exception {long configuredMemory = taskManagerServicesConfiguration.getConfiguredMemory();MemoryType memType = taskManagerServicesConfiguration.getMemoryType();final long memorySize;boolean preAllocateMemory = taskManagerServicesConfiguration.isPreAllocateMemory();if (configuredMemory > 0) {if (preAllocateMemory) {LOG.info(/*...*/);} else {LOG.info(/*...*/);}memorySize = configuredMemory << 20; // megabytes to bytes} else {// similar to #calculateNetworkBufferMemory(TaskManagerServicesConfiguration tmConfig)float memoryFraction = taskManagerServicesConfiguration.getMemoryFraction();if (memType == MemoryType.HEAP) {long freeHeapMemoryWithDefrag = taskManagerServicesConfiguration.getFreeHeapMemoryWithDefrag();// network buffers allocated off-heap -> use memoryFraction of the available heap:long relativeMemSize = (long) (freeHeapMemoryWithDefrag * memoryFraction);if (preAllocateMemory) {LOG.info(/*...*/);} else {LOG.info(/*...*/);}memorySize = relativeMemSize;} else if (memType == MemoryType.OFF_HEAP) {long maxJvmHeapMemory = taskManagerServicesConfiguration.getMaxJvmHeapMemory();// The maximum heap memory has been adjusted according to the fraction (see// calculateHeapSizeMB(long totalJavaMemorySizeMB, Configuration config)), i.e.// maxJvmHeap = jvmTotalNoNet - jvmTotalNoNet * memoryFraction = jvmTotalNoNet * (1 - memoryFraction)// directMemorySize = jvmTotalNoNet * memoryFractionlong directMemorySize = (long) (maxJvmHeapMemory / (1.0 - memoryFraction) * memoryFraction);if (preAllocateMemory) {LOG.info(/*...*/);} else {LOG.info(/*...*/);}memorySize = directMemorySize;} else {throw new RuntimeException("No supported memory type detected.");}}// now start the memory managerfinal MemoryManager memoryManager;try {memoryManager = new MemoryManager(memorySize,taskManagerServicesConfiguration.getNumberOfSlots(),taskManagerServicesConfiguration.getPageSize(),memType,preAllocateMemory);} catch (OutOfMemoryError e) {// ...}return memoryManager;}

简要叙述一下流程:

  1. 获取taskmanager.memory.size参数,用来确定托管内存的绝对大小;

  2. 如果taskmanager.memory.size未设置,就继续获取前面提到过的taskmanager.memory.fraction参数;

  3. 只考虑堆内内存的情况,调用TaskManagerServicesConfiguration.getFreeHeapMemoryWithDefrag()方法,先主动触发GC,然后获取可用的堆内存量。可见,如果没有意外,程序初始化时该方法返回的值与前文的-Xms/-Xmx应该相同;

  4. 计算托管内存大小和其他参数,返回MemoryManager实例。

一般来讲我们都不会简单粗暴地设置taskmanager.memory.size。所以:

flink_managed_memory = tm_heap_memory * taskmanager.memory.fraction = 2611 * 0.7 ≈ 1827

这就是TaskManager UI中显示的托管内存大小了。

业务和管理决定上限,技术决定下限

脱离ZooKeeper依赖的Kafka Controller Quorum(KRaft)机制浅析

背景调查时在调查些什么?

缓存之王 | Redis最佳实践&开发规范&FAQ

【大数据技术与架构】2021年大数据面试进阶系列系统总结

这篇关于Flink on YARN模式下TaskManager的内存分配探究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142886

相关文章

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法

【iOS】MVC模式

MVC模式 MVC模式MVC模式demo MVC模式 MVC模式全称为model(模型)view(视图)controller(控制器),他分为三个不同的层分别负责不同的职责。 View:该层用于存放视图,该层中我们可以对页面及控件进行布局。Model:模型一般都拥有很好的可复用性,在该层中,我们可以统一管理一些数据。Controlller:该层充当一个CPU的功能,即该应用程序

迭代器模式iterator

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/iterator 不暴露集合底层表现形式 (列表、 栈和树等) 的情况下遍历集合中所有的元素

《x86汇编语言:从实模式到保护模式》视频来了

《x86汇编语言:从实模式到保护模式》视频来了 很多朋友留言,说我的专栏《x86汇编语言:从实模式到保护模式》写得很详细,还有的朋友希望我能写得更细,最好是覆盖全书的所有章节。 毕竟我不是作者,只有作者的解读才是最权威的。 当初我学习这本书的时候,只能靠自己摸索,网上搜不到什么好资源。 如果你正在学这本书或者汇编语言,那你有福气了。 本书作者李忠老师,以此书为蓝本,录制了全套视频。 试

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者

JVM内存调优原则及几种JVM内存调优方法

JVM内存调优原则及几种JVM内存调优方法 1、堆大小设置。 2、回收器选择。   1、在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。   2、对JVM内存的系统级的调优主要的目的是减少