本文主要是介绍Flink on YARN模式下TaskManager的内存分配探究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
点击上方蓝色字体,选择“设为星标”
回复”资源“获取更多资源
我们使用如下的参数提交了Flink on YARN作业(per-job模式)。
/opt/flink-1.9.0/bin/flink run \
--detached \
--jobmanager yarn-cluster \
--yarnname "x.y.z" \
--yarnjobManagerMemory 2048 \
--yarntaskManagerMemory 4096 \
--yarnslots 2 \
--parallelism 20 \
--class x.y.z \
xyz-1.0.jar
该作业启动了10个TaskManager,并正常运行。来到该任务的Web界面,随便打开一个TaskManager页面,看看它的内存情况。
可见,虽然我们在参数中设置了TaskManager的内存为4GB大,但是上图显示的JVM堆大小只有2.47GB,另外还有一项“Flink Managed Memory”为1.78GB。在用VisualVM监控YarnTaskExecutorRunner时,会发现其JVM内存参数被如下设置:
显然Xmx+MaxDirectMemorySize才是我们在启动参数中设定的TM内存大小(4GB)。那么为什么会这样设置?“Flink Managed Memory”又是什么鬼?下面就来弄懂这些问题。
TaskManager内存布局如下图所示。
为了减少object overhead,Flink主要采用序列化的方式存储各种对象。序列化存储的最小单位叫做MemorySegment,底层为字节数组,大小由taskmanager.memory.segment-size参数指定,默认32KB大。下面分别介绍各块内存:
网络缓存(Network Buffer):用于网络传输及与网络相关的动作(shuffle、广播等)的内存块,由MemorySegment组成。从Flink 1.5版本之后,网络缓存固定分配在堆外,这样可以充分利用零拷贝等技术。与它相关的三个参数及我们的设定值如下:
# 网络缓存占TM内存的默认比例,默认0.1
taskmanager.network.memory.fraction: 0.15
# 网络缓存的最小值和最大值 ,默认64MB和1GB
taskmanager.network.memory.min: 128mb
taskmanager.network.memory.max: 1gb
托管内存(Flink Managed Memory):用于所有Flink内部算子逻辑的内存分配,以及中间数据的存储,同样由MemorySegment组成,并通过Flink的MemoryManager组件管理。它默认在堆内分配,如果开启堆外内存分配的开关,也可以在堆内、堆外同时分配。与它相关的两个参数如下:
# 堆内托管内存占TM堆内内存的比例,默认0.7
taskmanager.memory.fraction: 0.7
# 是否允许分配堆外托管内存,默认不允许
taskmanager.memory.off-heap: false
由此也可见,Flink的内存管理不像Spark一样区分Storage和Execution内存,而是直接合二为一,更加灵活。
空闲内存(Free):虽然名为空闲,但实际上是存储用户代码和数据结构的,固定在堆内,可以理解为堆内内存除去托管内存后剩下的那部分。
如果我们想知道文章开头的问题中各块内存的大小是怎么来的,最好的办法自然是去读源码。下面以Flink 1.9.0源码为例来探索。
TaskManager内存分配逻辑
YARN per-job集群的启动入口位于o.a.f.yarn.YarnClusterDescriptor类中。
public ClusterClient<ApplicationId> deployJobCluster(ClusterSpecification clusterSpecification,JobGraph jobGraph,boolean detached) throws ClusterDeploymentException {// this is required because the slots are allocated lazilyjobGraph.setAllowQueuedScheduling(true);try {return deployInternal(clusterSpecification,"Flink per-job cluster",getYarnJobClusterEntrypoint(),jobGraph,detached);} catch (Exception e) {throw new ClusterDeploymentException("Could not deploy Yarn job cluster.", e);}}
其中,ClusterSpecification对象持有该集群的4个基本参数:JobManager内存大小、TaskManager内存大小、TaskManager数量、每个TaskManager的slot数。而deployInternal()方法在开头调用了o.a.f.yarn.AbstractYarnClusterDescriptor抽象类的validateClusterSpecification()方法,用于校验ClusterSpecification是否合法。
private void validateClusterSpecification(ClusterSpecification clusterSpecification) throws FlinkException {try {final long taskManagerMemorySize = clusterSpecification.getTaskManagerMemoryMB();// We do the validation by calling the calculation methods here// Internally these methods will check whether the cluster can be started with the provided// ClusterSpecification and the configured memory requirementsfinal long cutoff = ContaineredTaskManagerParameters.calculateCutoffMB(flinkConfiguration, taskManagerMemorySize);TaskManagerServices.calculateHeapSizeMB(taskManagerMemorySize - cutoff, flinkConfiguration);} catch (IllegalArgumentException iae) {throw new FlinkException("Cannot fulfill the minimum memory requirements with the provided " +"cluster specification. Please increase the memory of the cluster.", iae);}}
ClusterSpecification.getTaskManagerMemoryMB()方法返回的就是-ytm/--yarntaskManagerMemory参数设定的内存,最终反映在Flink代码中都是taskmanager.heap.size配置项的值。
接下来首先调用ContaineredTaskManagerParameters.calculateCutoffMB()方法,它负责计算一个承载TM的YARN Container需要预留多少内存给TM之外的逻辑来使用。
public static long calculateCutoffMB(Configuration config, long containerMemoryMB) {Preconditions.checkArgument(containerMemoryMB > 0);// (1) check cutoff ratiofinal float memoryCutoffRatio = config.getFloat(ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_RATIO);if (memoryCutoffRatio >= 1 || memoryCutoffRatio <= 0) {throw new IllegalArgumentException("The configuration value '"+ ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_RATIO.key() + "' must be between 0 and 1. Value given="+ memoryCutoffRatio);}// (2) check min cutoff valuefinal int minCutoff = config.getInteger(ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_MIN);if (minCutoff >= containerMemoryMB) {throw new IllegalArgumentException("The configuration value '"+ ResourceManagerOptions.CONTAINERIZED_HEAP_CUTOFF_MIN.key() + "'='" + minCutoff+ "' is larger than the total container memory " + containerMemoryMB);}// (3) check between heap and off-heaplong cutoff = (long) (containerMemoryMB * memoryCutoffRatio);if (cutoff < minCutoff) {cutoff = minCutoff;}return cutoff;}
该方法的执行流程如下:
获取containerized.heap-cutoff-ratio参数,它代表Container预留的非TM内存占设定的TM内存的比例,默认值0.25;
获取containerized.heap-cutoff-min参数,它代表Container预留的非TM内存的最小值,默认值600MB;
按比例计算预留内存,并保证结果不小于最小值。
由此可见,在Flink on YARN时,我们设定的TM内存实际上是Container的内存。也就是说,一个TM能利用的总内存(包含堆内和堆外)是:
tm_total_memory = taskmanager.heap.size - max[containerized.heap-cutoff-min, taskmanager.heap.size * containerized.heap-cutoff-ratio]
用文章开头给的参数实际计算一下:
tm_total_memory = 4096 - max[600, 4096 * 0.25] = 3072
接下来看TaskManagerServices.calculateHeapSizeMB()方法。
public static long calculateHeapSizeMB(long totalJavaMemorySizeMB, Configuration config) {Preconditions.checkArgument(totalJavaMemorySizeMB > 0);// all values below here are in bytesfinal long totalProcessMemory = megabytesToBytes(totalJavaMemorySizeMB);final long networkReservedMemory = getReservedNetworkMemory(config, totalProcessMemory);final long heapAndManagedMemory = totalProcessMemory - networkReservedMemory;if (config.getBoolean(TaskManagerOptions.MEMORY_OFF_HEAP)) {final long managedMemorySize = getManagedMemoryFromHeapAndManaged(config, heapAndManagedMemory);ConfigurationParserUtils.checkConfigParameter(managedMemorySize < heapAndManagedMemory, managedMemorySize,TaskManagerOptions.MANAGED_MEMORY_SIZE.key(),"Managed memory size too large for " + (networkReservedMemory >> 20) +" MB network buffer memory and a total of " + totalJavaMemorySizeMB +" MB JVM memory");return bytesToMegabytes(heapAndManagedMemory - managedMemorySize);}else {return bytesToMegabytes(heapAndManagedMemory);}}
为了简化问题及符合我们的实际应用,就不考虑开启堆外托管内存的情况了。这里涉及到了计算Network buffer大小的方法```
NettyShuffleEnvironmentConfiguration.calculateNetworkBufferMemory()。public static long calculateNetworkBufferMemory(long totalJavaMemorySize, Configuration config) {final int segmentSize = ConfigurationParserUtils.getPageSize(config);final long networkBufBytes;if (hasNewNetworkConfig(config)) {float networkBufFraction = config.getFloat(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_FRACTION);long networkBufSize = (long) (totalJavaMemorySize * networkBufFraction);networkBufBytes = calculateNewNetworkBufferMemory(config, networkBufSize, totalJavaMemorySize);} else {// use old (deprecated) network buffers parameter// 旧版逻辑,不再看了}return networkBufBytes;}private static long calculateNewNetworkBufferMemory(Configuration config, long networkBufSize, long maxJvmHeapMemory) {float networkBufFraction = config.getFloat(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_FRACTION);long networkBufMin = MemorySize.parse(config.getString(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_MIN)).getBytes();long networkBufMax = MemorySize.parse(config.getString(NettyShuffleEnvironmentOptions.NETWORK_BUFFERS_MEMORY_MAX)).getBytes();int pageSize = ConfigurationParserUtils.getPageSize(config);checkNewNetworkConfig(pageSize, networkBufFraction, networkBufMin, networkBufMax);long networkBufBytes = Math.min(networkBufMax, Math.max(networkBufMin, networkBufSize));ConfigurationParserUtils.checkConfigParameter(/*...*/);return networkBufBytes;}
由此可见,网络缓存的大小这样确定:
network_buffer_memory = min[taskmanager.network.memory.max, max(askmanager.network.memory.min, tm_total_memory * taskmanager.network.memory.fraction)]
代入数值:
network_buffer_memory = min[1024, max(128, 3072 * 0.15)] = 460.8
也就是说,TM真正使用的堆内内存为:
tm_heap_memory = tm_total_memory - network_buffer_memory = 3072 - 460.8 ≈ 2611
这完全符合VisualVM截图中的-Xms/-Xmx设定。
同理,可以看一下TaskManager UI中的网络缓存MemorySegment计数。
通过计算得知,网络缓存的实际值与上面算出来的network_buffer_memory值是非常接近的。
那么堆内托管内存的值是怎么计算出来的呢?前面提到了托管内存由MemoryManager管理,来看看TaskManagerServices.createMemoryManager()方法,它用设定好的参数来初始化一个MemoryManager。
private static MemoryManager createMemoryManager(TaskManagerServicesConfiguration taskManagerServicesConfiguration) throws Exception {long configuredMemory = taskManagerServicesConfiguration.getConfiguredMemory();MemoryType memType = taskManagerServicesConfiguration.getMemoryType();final long memorySize;boolean preAllocateMemory = taskManagerServicesConfiguration.isPreAllocateMemory();if (configuredMemory > 0) {if (preAllocateMemory) {LOG.info(/*...*/);} else {LOG.info(/*...*/);}memorySize = configuredMemory << 20; // megabytes to bytes} else {// similar to #calculateNetworkBufferMemory(TaskManagerServicesConfiguration tmConfig)float memoryFraction = taskManagerServicesConfiguration.getMemoryFraction();if (memType == MemoryType.HEAP) {long freeHeapMemoryWithDefrag = taskManagerServicesConfiguration.getFreeHeapMemoryWithDefrag();// network buffers allocated off-heap -> use memoryFraction of the available heap:long relativeMemSize = (long) (freeHeapMemoryWithDefrag * memoryFraction);if (preAllocateMemory) {LOG.info(/*...*/);} else {LOG.info(/*...*/);}memorySize = relativeMemSize;} else if (memType == MemoryType.OFF_HEAP) {long maxJvmHeapMemory = taskManagerServicesConfiguration.getMaxJvmHeapMemory();// The maximum heap memory has been adjusted according to the fraction (see// calculateHeapSizeMB(long totalJavaMemorySizeMB, Configuration config)), i.e.// maxJvmHeap = jvmTotalNoNet - jvmTotalNoNet * memoryFraction = jvmTotalNoNet * (1 - memoryFraction)// directMemorySize = jvmTotalNoNet * memoryFractionlong directMemorySize = (long) (maxJvmHeapMemory / (1.0 - memoryFraction) * memoryFraction);if (preAllocateMemory) {LOG.info(/*...*/);} else {LOG.info(/*...*/);}memorySize = directMemorySize;} else {throw new RuntimeException("No supported memory type detected.");}}// now start the memory managerfinal MemoryManager memoryManager;try {memoryManager = new MemoryManager(memorySize,taskManagerServicesConfiguration.getNumberOfSlots(),taskManagerServicesConfiguration.getPageSize(),memType,preAllocateMemory);} catch (OutOfMemoryError e) {// ...}return memoryManager;}
简要叙述一下流程:
获取taskmanager.memory.size参数,用来确定托管内存的绝对大小;
如果taskmanager.memory.size未设置,就继续获取前面提到过的taskmanager.memory.fraction参数;
只考虑堆内内存的情况,调用TaskManagerServicesConfiguration.getFreeHeapMemoryWithDefrag()方法,先主动触发GC,然后获取可用的堆内存量。可见,如果没有意外,程序初始化时该方法返回的值与前文的-Xms/-Xmx应该相同;
计算托管内存大小和其他参数,返回MemoryManager实例。
一般来讲我们都不会简单粗暴地设置taskmanager.memory.size。所以:
flink_managed_memory = tm_heap_memory * taskmanager.memory.fraction = 2611 * 0.7 ≈ 1827
这就是TaskManager UI中显示的托管内存大小了。
业务和管理决定上限,技术决定下限
脱离ZooKeeper依赖的Kafka Controller Quorum(KRaft)机制浅析
背景调查时在调查些什么?
缓存之王 | Redis最佳实践&开发规范&FAQ
【大数据技术与架构】2021年大数据面试进阶系列系统总结
这篇关于Flink on YARN模式下TaskManager的内存分配探究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!