【全网最全】2024年数学建模国赛C题超详细保奖思路+可视化图表+成品论文+matlab/python代码等(后续会更新

本文主要是介绍【全网最全】2024年数学建模国赛C题超详细保奖思路+可视化图表+成品论文+matlab/python代码等(后续会更新,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

您的点赞收藏是我继续更新的最大动力!

一定要点击如下的卡片,那是获取资料的入口!

【全网最全】2024年数学建模国赛C题超详细保奖思路+可视化图表+成品论文+matlab/python代码等(后续会更新「首先来看看目前已有的资料,还会不断更新哦~一次购买,后续不会再被收费哦,保证是全网最全资源,随着后续内容更新,价格会上涨,越早购买,价格越低,让大家再也不需要到处买断片资料啦~💰💸👋」👋👋更新超详细思路详解,含可视化图表等(后续会更新) icon-default.png?t=O83Ahttps://mbd.pub/o/bread/Zpqbk51r

2024年高教社杯数学建模国赛C题超详细解题思路分析

本次国赛预测题目难度,选题人数如下所示

难度评估 A:B:C= 1.8:1.3:1

          D:E=1.5:1

选题人数 A:B:C= 1:1.5:2.8

          D:E=0.5:1.2

C题一直以来都是竞赛难度最低、选题人数最多的一道本科生选题,近三年C题的选题人数一直都是总参赛队伍的一半左右,2023年六万支参赛队伍,C题选题队数2.8万。今年初步预计应该也是在3万左右。基于如此多的选题人数,本次我们将给大家带来两个版本的解题思路【思路、模型、代码完全不同】,下面进行第一版本的思路介绍

近年来,国赛在任何题目的数据预处理环节都设置了5-15分不等的数据预处理分值,因此数据预处理是必须进行的环节。数据预处理不仅仅是异常值、缺失值的处理,数据整合、数据可视化、描述性分析均是数据预处理工作。对于本次,我们可以进行异常值处理、数据整合、数据可视化、描述性分析进行数据的呈现。

数据预处理

  1. 异常值检测:题目中存在极端异常的数据,例如无论是亩产量还是种植成本存在极端数据,无论该数据是否真实我们都需要进行说明,以确保数据真实。

2数据可视化、描述性分析:我们可以对题目给出的数据进行初步分析,以便后续建模,例如我们可以进行一些数据的可视化工作。

3、后续数据计算

耕地数据:

  • 定义每块地 Ai 的面积 Si 和作物 j 在地块 i 上种植的面积 xij 。
  • 作物 j 的种植总面积需满足地块总面积约束:

jxijSi,∀i

农作物数据:

  • 每种作物 j 的亩产量 yj 、种植成本 cj 和销售价格 pj 分别从 2023 年的数据中提取。收益公式为:

 收益 =pjyjxij-cjxij

预期销售量:

  • 对于问题一,我们假设 2023 年的销售量等于实际产量,并在后续年份保持不变:

 预期销售量 j= 产量 j2023

  • 在问题二中,小麦和玉米的年销售量增长率在 5%-10% 之间,而其他作物的预期销售量每年波动 ±5% 。对于小麦和玉米的增长模型:

预期销售量  j(t)=

 销售量  j(2023)×1+gjt,gj∈[0.05,0.10]

, .

问题一:最优种植方案(2024-2030)

1. 建立收益最大化模型

目标函数

目标: 优化种植方案以最大化总收益。

目标函数(收益最大化):

 Maximize Total Profit =ijpjyjxij-cjxij

其中, xij

 表示地块 i

 上种植作物 j

 的面积, pj

 为作物 j

 的销售价格, yj

 为作物 j

 的亩产量, cj

 为作物 j

 的种植成本。
1、销售量约束:

对于问题1(1),若作物 j

 的产量超过预期销售量,则超出部分将无法销售:

yjxij≤ 预期销售量, ∀j,i

对于问题1(2),超出的部分按 50%

 降价销售:

Total Revenue =pj⋅minyjxij

 ,预期销售量 j+0.5⋅pj⋅maxyjxij-预期销售量

这篇关于【全网最全】2024年数学建模国赛C题超详细保奖思路+可视化图表+成品论文+matlab/python代码等(后续会更新的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142102

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py