【全网最全】2024年数学建模国赛C题超详细保奖思路+可视化图表+成品论文+matlab/python代码等(后续会更新

本文主要是介绍【全网最全】2024年数学建模国赛C题超详细保奖思路+可视化图表+成品论文+matlab/python代码等(后续会更新,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

您的点赞收藏是我继续更新的最大动力!

一定要点击如下的卡片,那是获取资料的入口!

【全网最全】2024年数学建模国赛C题超详细保奖思路+可视化图表+成品论文+matlab/python代码等(后续会更新「首先来看看目前已有的资料,还会不断更新哦~一次购买,后续不会再被收费哦,保证是全网最全资源,随着后续内容更新,价格会上涨,越早购买,价格越低,让大家再也不需要到处买断片资料啦~💰💸👋」👋👋更新超详细思路详解,含可视化图表等(后续会更新) icon-default.png?t=O83Ahttps://mbd.pub/o/bread/Zpqbk51r

2024年高教社杯数学建模国赛C题超详细解题思路分析

本次国赛预测题目难度,选题人数如下所示

难度评估 A:B:C= 1.8:1.3:1

          D:E=1.5:1

选题人数 A:B:C= 1:1.5:2.8

          D:E=0.5:1.2

C题一直以来都是竞赛难度最低、选题人数最多的一道本科生选题,近三年C题的选题人数一直都是总参赛队伍的一半左右,2023年六万支参赛队伍,C题选题队数2.8万。今年初步预计应该也是在3万左右。基于如此多的选题人数,本次我们将给大家带来两个版本的解题思路【思路、模型、代码完全不同】,下面进行第一版本的思路介绍

近年来,国赛在任何题目的数据预处理环节都设置了5-15分不等的数据预处理分值,因此数据预处理是必须进行的环节。数据预处理不仅仅是异常值、缺失值的处理,数据整合、数据可视化、描述性分析均是数据预处理工作。对于本次,我们可以进行异常值处理、数据整合、数据可视化、描述性分析进行数据的呈现。

数据预处理

  1. 异常值检测:题目中存在极端异常的数据,例如无论是亩产量还是种植成本存在极端数据,无论该数据是否真实我们都需要进行说明,以确保数据真实。

2数据可视化、描述性分析:我们可以对题目给出的数据进行初步分析,以便后续建模,例如我们可以进行一些数据的可视化工作。

3、后续数据计算

耕地数据:

  • 定义每块地 Ai 的面积 Si 和作物 j 在地块 i 上种植的面积 xij 。
  • 作物 j 的种植总面积需满足地块总面积约束:

jxijSi,∀i

农作物数据:

  • 每种作物 j 的亩产量 yj 、种植成本 cj 和销售价格 pj 分别从 2023 年的数据中提取。收益公式为:

 收益 =pjyjxij-cjxij

预期销售量:

  • 对于问题一,我们假设 2023 年的销售量等于实际产量,并在后续年份保持不变:

 预期销售量 j= 产量 j2023

  • 在问题二中,小麦和玉米的年销售量增长率在 5%-10% 之间,而其他作物的预期销售量每年波动 ±5% 。对于小麦和玉米的增长模型:

预期销售量  j(t)=

 销售量  j(2023)×1+gjt,gj∈[0.05,0.10]

, .

问题一:最优种植方案(2024-2030)

1. 建立收益最大化模型

目标函数

目标: 优化种植方案以最大化总收益。

目标函数(收益最大化):

 Maximize Total Profit =ijpjyjxij-cjxij

其中, xij

 表示地块 i

 上种植作物 j

 的面积, pj

 为作物 j

 的销售价格, yj

 为作物 j

 的亩产量, cj

 为作物 j

 的种植成本。
1、销售量约束:

对于问题1(1),若作物 j

 的产量超过预期销售量,则超出部分将无法销售:

yjxij≤ 预期销售量, ∀j,i

对于问题1(2),超出的部分按 50%

 降价销售:

Total Revenue =pj⋅minyjxij

 ,预期销售量 j+0.5⋅pj⋅maxyjxij-预期销售量

这篇关于【全网最全】2024年数学建模国赛C题超详细保奖思路+可视化图表+成品论文+matlab/python代码等(后续会更新的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142102

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

SQL Server中行转列方法详细讲解

《SQLServer中行转列方法详细讲解》SQL行转列、列转行可以帮助我们更方便地处理数据,生成需要的报表和结果集,:本文主要介绍SQLServer中行转列方法的相关资料,需要的朋友可以参考下... 目录前言一、为什么需要行转列二、行转列的基本概念三、使用PIVOT运算符进行行转列1.创建示例数据表并插入数

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param