【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2

2024-09-06 12:28

本文主要是介绍【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

与普通最小二乘法 (OLS) 的比较

应用理论:政治制度与GDP

拟合模型:贝叶斯方法

 多变量结果和相关性度量

结论


与普通最小二乘法 (OLS) 的比较

simple_ols_reg = sk_lin_reg().fit(X.reshape(-1, 1), y)print("Intercept:", simple_ols_reg.intercept_, "Beta:", simple_ols_reg.coef_[0])
Intercept: 0.5677845035965572 Beta: 4.427701928515228

我们可以看到,由于处理变量的内生性,OLS 过高地估计了焦点参数的值,而 IV 回归则更接近真实值。正是这种偏误,工具变量设计的目的就是要缓解。

应用理论:政治制度与GDP

提醒一下,我们想要建模以下关系:

iv_df = cp.load_data("risk")
iv_df[["longname", "loggdp", "risk", "logmort0"]].head()

 

当我们观察到政治制度在这个增长系统中是内生的时候,问题就出现了。这意味着我们需要以某种方式控制测量误差和偏误,如果我们简单地拟合一个OLS模型的话。他们继续论证说,我们可以使用一个工具变量,这个变量仅通过政治制度的程度与GDP相关联,通过使用工具变量回归。他们最终建议使用欧洲定居者在那个时期的死亡率作为工具变量,因为较高的死亡率会导致较少的移民和对该地区的投资,这应该会减少在殖民地建立的政治制度。他们可以使用军事记录来收集这些数据。

我们可以手动估计两阶段最小二乘法 (2SLS) 的处理效应如下:

X = iv_df.risk.values.reshape(-1, 1)
Z = iv_df.logmort0.values.reshape(-1, 1)
t = iv_df.risk.values
y = iv_df.loggdp.valuessimple_ols_reg = sk_lin_reg().fit(X, y)
first_stage_reg = sk_lin_reg().fit(Z, t)
fitted_risk_values = first_stage_reg.predict(Z)second_stage_reg = sk_lin_reg().fit(X=fitted_risk_values.reshape(-1, 1), y=y)print("Simple OLS Parameters: Intercept and Beta Coeff",simple_ols_reg.intercept_,simple_ols_reg.coef_,
)
print("First Stage Parameters: Intercept and Beta Coeff",first_stage_reg.intercept_,first_stage_reg.coef_,
)
print("Second Stage Parameters Intercept and Beta Coeff",second_stage_reg.intercept_,second_stage_reg.coef_,
)
Simple OLS Parameters: Intercept and Beta Coeff 4.687414702305412 [0.51618698]
First Stage Parameters: Intercept and Beta Coeff 9.365894904697788 [-0.61328925]
Second Stage Parameters Intercept and Beta Coeff 1.9942956864448975 [0.92948966]

请注意,朴素的OLS估计值0.515与2SLS估计值0.92在处理效应上的显著差异。这与论文中报告的结果相符。

在这个笔记中,我们不会进一步讨论弱工具变量和强工具变量的问题,也不会讨论如何找到并测试工具变量的强度,但我们将会展示如何在贝叶斯设置下拟合这类模型。我们还将讨论贝叶斯方法如何在幕后将焦点(第二阶段)回归和工具(第一阶段)回归建模为具有明确相关性的多元随机变量。想法是将这两个结果一起建模,并带有明确的相关性。这种方法的好处是我们可以获得关于“工具”和结果之间关系的额外见解。

\begin{aligned}\begin{pmatrix}y\\t\end{pmatrix}&\sim\text{MultiNormal}(\mu,\Sigma)\\\mu&=\begin{pmatrix}\mu_y\\\mu_t\end{pmatrix}=\begin{pmatrix}\beta_{00}+\beta_{01}t\\\beta_{10}+\beta_{11}z\end{pmatrix}\end{aligned}

在这个实现的选择上,我们遵循了Juan Orduz博客的例子,该例子又借鉴了Jim Savage的工作。这样做有一个好处,那就是能够明确地表达出我们对处理变量和工具变量联合分布的兴趣。

拟合模型:贝叶斯方法

我们使用CausalPy来处理我们的数据,具体如下:

sample_kwargs = {"tune": 1000, "draws": 2000, "chains": 4, "cores": 4}
instruments_formula = "risk  ~ 1 + logmort0"
formula = "loggdp ~  1 + risk"
instruments_data = iv_df[["risk", "logmort0"]]
data = iv_df[["loggdp", "risk"]]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)az.plot_trace(iv.model.idata, var_names=["beta_z", "beta_t"]);

az.summary(iv.model.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

hdi_prob = 0.94
ax = az.plot_posterior(data=iv.model.idata,var_names=["beta_z"],hdi_prob=hdi_prob,
)ax[0].axvline(iv.ols_beta_params["Intercept"],label="Naive OLS Intercept \n Estimate",color="red",
)
ax[1].axvline(iv.ols_beta_params[iv.instrument_variable_name],label="Naive OLS Treatment \n Estimate",color="red",
)
ax[0].axvline(iv.ols_beta_second_params[0], label="MLE 2SLS Intercept \n Estimate", color="purple"
)
ax[1].axvline(iv.ols_beta_second_params[1], label="MLE 2SLS Treatment \n Estimate", color="purple"
)
ax[0].legend()
ax[1].legend();

 多变量结果和相关性度量

正如我们上面所述,贝叶斯方法的一个好处是我们可以直接测量工具变量和处理变量之间的双变量关系。我们可以看到(在二维空间中)估计的处理系数差异如何扭曲预期结果的表示。

az.summary(iv.model.idata, var_names=["chol_cov_corr"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

fig, axs = plt.subplots(1, 3, figsize=(20, 8))diffs = (iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name])- iv.ols_beta_params[iv.instrument_variable_name]
)
axs[0].hist(diffs.values.flatten(), bins=30, ec="black", color="blue", alpha=0.4)
axs[0].axvline(np.mean(diffs.values.flatten()),label="Expected Diff \n In Treatment Effect \n Estimate",color="magenta",
)
axs[0].set_xlabel("Difference")
axs[0].legend()intercepts = iv.model.idata["posterior"]["beta_z"].sel(covariates=["Intercept"])
betas = iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name]
)raw_df = pd.DataFrame(iv.X, columns=iv.labels)
x = np.linspace(0, 10, 10)
uncertainty = [intercepts.values.flatten() + betas.values.flatten() * i for i in x]
uncertainty = pd.DataFrame(uncertainty).Tols = [iv.ols_beta_params["Intercept"]+ iv.ols_beta_params[iv.instrument_variable_name] * ifor i in x
]custom_lines = [Line2D([0], [0], color="orange", lw=4),Line2D([0], [0], color="black", lw=4),
]uncertainty.sample(500).T.plot(legend=False, color="orange", alpha=0.4, ax=axs[1])
axs[1].plot(x, ols, color="black", label="OLS fit")
axs[1].set_title("OLS versus Instrumental Regression Fits", fontsize=20)
axs[1].legend(custom_lines, ["IV fits", "OlS fit"])
axs[1].set_xlabel("Treatment Scale/ Risk")
axs[1].set_ylabel("Outcome Scale/ Log GDP")axs[0].set_title("Posterior Differences between \n OLS and IV beta coefficients", fontsize=20
)corr = az.extract(data=iv.model.idata, var_names=["chol_cov_corr"])[0, 1, :]
axs[2].hist(corr, bins=30, ec="black", color="C2", label="correlation")
axs[2].set_xlabel("Correlation Measure")
axs[2].set_title("Correlation between \n Outcome and Treatment", fontsize=20);

结论

我们在这里看到的是,在估计不同政策干预的效果方面存在着非平凡的差异。工具变量回归是我们工具箱中的一种工具,可以帮助我们在潜在受上述基本DAG描述的混淆影响的情况下揭示政策的微妙效应。

和其他因果推断技术一样,很多因素都取决于初始DAG对你的情况有多合理,以及混淆的本质是否可以通过该技术解决。工具变量回归在计量经济学中很受欢迎并且是基础性的,主要是因为当我们希望考察政策干预效果时,潜在的混淆模式非常普遍。

这篇关于【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141997

相关文章

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下