【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2

2024-09-06 12:28

本文主要是介绍【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

与普通最小二乘法 (OLS) 的比较

应用理论:政治制度与GDP

拟合模型:贝叶斯方法

 多变量结果和相关性度量

结论


与普通最小二乘法 (OLS) 的比较

simple_ols_reg = sk_lin_reg().fit(X.reshape(-1, 1), y)print("Intercept:", simple_ols_reg.intercept_, "Beta:", simple_ols_reg.coef_[0])
Intercept: 0.5677845035965572 Beta: 4.427701928515228

我们可以看到,由于处理变量的内生性,OLS 过高地估计了焦点参数的值,而 IV 回归则更接近真实值。正是这种偏误,工具变量设计的目的就是要缓解。

应用理论:政治制度与GDP

提醒一下,我们想要建模以下关系:

iv_df = cp.load_data("risk")
iv_df[["longname", "loggdp", "risk", "logmort0"]].head()

 

当我们观察到政治制度在这个增长系统中是内生的时候,问题就出现了。这意味着我们需要以某种方式控制测量误差和偏误,如果我们简单地拟合一个OLS模型的话。他们继续论证说,我们可以使用一个工具变量,这个变量仅通过政治制度的程度与GDP相关联,通过使用工具变量回归。他们最终建议使用欧洲定居者在那个时期的死亡率作为工具变量,因为较高的死亡率会导致较少的移民和对该地区的投资,这应该会减少在殖民地建立的政治制度。他们可以使用军事记录来收集这些数据。

我们可以手动估计两阶段最小二乘法 (2SLS) 的处理效应如下:

X = iv_df.risk.values.reshape(-1, 1)
Z = iv_df.logmort0.values.reshape(-1, 1)
t = iv_df.risk.values
y = iv_df.loggdp.valuessimple_ols_reg = sk_lin_reg().fit(X, y)
first_stage_reg = sk_lin_reg().fit(Z, t)
fitted_risk_values = first_stage_reg.predict(Z)second_stage_reg = sk_lin_reg().fit(X=fitted_risk_values.reshape(-1, 1), y=y)print("Simple OLS Parameters: Intercept and Beta Coeff",simple_ols_reg.intercept_,simple_ols_reg.coef_,
)
print("First Stage Parameters: Intercept and Beta Coeff",first_stage_reg.intercept_,first_stage_reg.coef_,
)
print("Second Stage Parameters Intercept and Beta Coeff",second_stage_reg.intercept_,second_stage_reg.coef_,
)
Simple OLS Parameters: Intercept and Beta Coeff 4.687414702305412 [0.51618698]
First Stage Parameters: Intercept and Beta Coeff 9.365894904697788 [-0.61328925]
Second Stage Parameters Intercept and Beta Coeff 1.9942956864448975 [0.92948966]

请注意,朴素的OLS估计值0.515与2SLS估计值0.92在处理效应上的显著差异。这与论文中报告的结果相符。

在这个笔记中,我们不会进一步讨论弱工具变量和强工具变量的问题,也不会讨论如何找到并测试工具变量的强度,但我们将会展示如何在贝叶斯设置下拟合这类模型。我们还将讨论贝叶斯方法如何在幕后将焦点(第二阶段)回归和工具(第一阶段)回归建模为具有明确相关性的多元随机变量。想法是将这两个结果一起建模,并带有明确的相关性。这种方法的好处是我们可以获得关于“工具”和结果之间关系的额外见解。

\begin{aligned}\begin{pmatrix}y\\t\end{pmatrix}&\sim\text{MultiNormal}(\mu,\Sigma)\\\mu&=\begin{pmatrix}\mu_y\\\mu_t\end{pmatrix}=\begin{pmatrix}\beta_{00}+\beta_{01}t\\\beta_{10}+\beta_{11}z\end{pmatrix}\end{aligned}

在这个实现的选择上,我们遵循了Juan Orduz博客的例子,该例子又借鉴了Jim Savage的工作。这样做有一个好处,那就是能够明确地表达出我们对处理变量和工具变量联合分布的兴趣。

拟合模型:贝叶斯方法

我们使用CausalPy来处理我们的数据,具体如下:

sample_kwargs = {"tune": 1000, "draws": 2000, "chains": 4, "cores": 4}
instruments_formula = "risk  ~ 1 + logmort0"
formula = "loggdp ~  1 + risk"
instruments_data = iv_df[["risk", "logmort0"]]
data = iv_df[["loggdp", "risk"]]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)az.plot_trace(iv.model.idata, var_names=["beta_z", "beta_t"]);

az.summary(iv.model.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

hdi_prob = 0.94
ax = az.plot_posterior(data=iv.model.idata,var_names=["beta_z"],hdi_prob=hdi_prob,
)ax[0].axvline(iv.ols_beta_params["Intercept"],label="Naive OLS Intercept \n Estimate",color="red",
)
ax[1].axvline(iv.ols_beta_params[iv.instrument_variable_name],label="Naive OLS Treatment \n Estimate",color="red",
)
ax[0].axvline(iv.ols_beta_second_params[0], label="MLE 2SLS Intercept \n Estimate", color="purple"
)
ax[1].axvline(iv.ols_beta_second_params[1], label="MLE 2SLS Treatment \n Estimate", color="purple"
)
ax[0].legend()
ax[1].legend();

 多变量结果和相关性度量

正如我们上面所述,贝叶斯方法的一个好处是我们可以直接测量工具变量和处理变量之间的双变量关系。我们可以看到(在二维空间中)估计的处理系数差异如何扭曲预期结果的表示。

az.summary(iv.model.idata, var_names=["chol_cov_corr"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

fig, axs = plt.subplots(1, 3, figsize=(20, 8))diffs = (iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name])- iv.ols_beta_params[iv.instrument_variable_name]
)
axs[0].hist(diffs.values.flatten(), bins=30, ec="black", color="blue", alpha=0.4)
axs[0].axvline(np.mean(diffs.values.flatten()),label="Expected Diff \n In Treatment Effect \n Estimate",color="magenta",
)
axs[0].set_xlabel("Difference")
axs[0].legend()intercepts = iv.model.idata["posterior"]["beta_z"].sel(covariates=["Intercept"])
betas = iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name]
)raw_df = pd.DataFrame(iv.X, columns=iv.labels)
x = np.linspace(0, 10, 10)
uncertainty = [intercepts.values.flatten() + betas.values.flatten() * i for i in x]
uncertainty = pd.DataFrame(uncertainty).Tols = [iv.ols_beta_params["Intercept"]+ iv.ols_beta_params[iv.instrument_variable_name] * ifor i in x
]custom_lines = [Line2D([0], [0], color="orange", lw=4),Line2D([0], [0], color="black", lw=4),
]uncertainty.sample(500).T.plot(legend=False, color="orange", alpha=0.4, ax=axs[1])
axs[1].plot(x, ols, color="black", label="OLS fit")
axs[1].set_title("OLS versus Instrumental Regression Fits", fontsize=20)
axs[1].legend(custom_lines, ["IV fits", "OlS fit"])
axs[1].set_xlabel("Treatment Scale/ Risk")
axs[1].set_ylabel("Outcome Scale/ Log GDP")axs[0].set_title("Posterior Differences between \n OLS and IV beta coefficients", fontsize=20
)corr = az.extract(data=iv.model.idata, var_names=["chol_cov_corr"])[0, 1, :]
axs[2].hist(corr, bins=30, ec="black", color="C2", label="correlation")
axs[2].set_xlabel("Correlation Measure")
axs[2].set_title("Correlation between \n Outcome and Treatment", fontsize=20);

结论

我们在这里看到的是,在估计不同政策干预的效果方面存在着非平凡的差异。工具变量回归是我们工具箱中的一种工具,可以帮助我们在潜在受上述基本DAG描述的混淆影响的情况下揭示政策的微妙效应。

和其他因果推断技术一样,很多因素都取决于初始DAG对你的情况有多合理,以及混淆的本质是否可以通过该技术解决。工具变量回归在计量经济学中很受欢迎并且是基础性的,主要是因为当我们希望考察政策干预效果时,潜在的混淆模式非常普遍。

这篇关于【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141997

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只