实变函数精解【18】

2024-09-06 03:52
文章标签 函数 18 精解 实变

本文主要是介绍实变函数精解【18】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 有限测度
  • 参考文献

有限测度

首先,我们来明确“测度”的概念。在数学中,测度是一个将集合映射到非负实数(通常是实数的扩展,包括正无穷)的函数,它满足某些特定的性质,比如非负性、可加性等。有了这个基础,我们可以进一步探讨有限测度和概率测度的具体定义和它们之间的关系。

有限测度

  • 定义:设 X X X是一个集合, μ \mu μ X X X上的一个测度。如果对于 X X X中的任意集合 A A A,都有 μ ( A ) < ∞ \mu(A) < \infty μ(A)<(即测度的值是有限的),则称 μ \mu μ X X X上的有限测度。
  • 特性:有限测度具有测度的所有基本性质,但其值被限制在有限范围内。

概率测度

  • 定义:概率测度是定义在样本空间(或称为概率空间)上的特殊测度。具体来说,设 ( Ω , F ) (\Omega, \mathcal{F}) (Ω,F)是一个可测空间,其中 Ω \Omega Ω是样本点集合, F \mathcal{F} F Ω \Omega Ω的子集构成的 σ \sigma σ-代数。一个概率测度 P P P是满足以下条件的测度:
    • P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1(即整个样本空间的测度为1,代表概率为1或必然事件);
    • 对于任意 A ∈ F A \in \mathcal{F} AF,有 P ( A ) ≥ 0 P(A) \geq 0 P(A)0(即任何事件的概率都是非负的)。
  • 特性:概率测度除了具有测度的基本性质外,还特别强调了整个样本空间的测度为1,这体现了概率的“归一化”特点。

有限测度与概率测度的关系

  • 概率测度是一种特殊的有限测度:由于概率测度的定义要求了任何事件的概率都是非负的,且整个样本空间的概率为1,因此概率测度的取值范围被限制在 [ 0 , 1 ] [0, 1] [0,1]之间,自然也就是有限的。所以,概率测度可以看作是有限测度在概率论中的具体应用。
  • 并非所有有限测度都是概率测度:有限测度的取值可以是任意非负实数(只要不超过某个有限上界),而概率测度的取值则必须满足归一化条件。因此,有限测度的范围更广,概率测度只是其中的一部分。

σ \sigma σ-有限测度

首先,我们需要明确“ σ \sigma σ有限测度”的概念。在数学中,特别是在测度论中,一个测度空间上的测度如果满足某些特定的性质,就可以被称为 σ \sigma σ有限测度。

定义

( X , A , μ ) (X, \mathcal{A}, \mu) (X,A,μ)是一个测度空间,其中 X X X是集合, A \mathcal{A} A X X X上的 σ \sigma σ-代数(即由 X X X的子集构成的集合,且满足某些特定性质,如可数并、交、补等运算的封闭性), μ \mu μ是从 A \mathcal{A} A到非负实数(包括正无穷)的映射,满足测度的定义(非负性、可加性等)。

如果 X X X可以表示为可数个测度有限的集合的并集,即存在 { A n } n = 1 ∞ ⊆ A \{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A} {An}n=1A,使得 X = ⋃ n = 1 ∞ A n X = \bigcup_{n=1}^{\infty} A_n X=n=1An,且对于每个 n n n,都有 μ ( A n ) < ∞ \mu(A_n) < \infty μ(An)<,则称 μ \mu μ X X X上的 σ \sigma σ有限测度。

解释

  1. 可数性:这里的“ σ \sigma σ”表示可数(countable),因此 σ \sigma σ有限测度意味着我们可以将整个空间 X X X分解为可数个测度有限的子空间。
  2. 有限性:每个 A n A_n An的测度都是有限的,即 μ ( A n ) < ∞ \mu(A_n) < \infty μ(An)<。但这并不意味着整个空间 X X X的测度 μ ( X ) \mu(X) μ(X)也一定是有限的。实际上,在某些情况下, μ ( X ) \mu(X) μ(X)可能是正无穷。
  3. 应用 σ \sigma σ有限测度在积分理论、概率论和实分析等领域都有广泛的应用。例如,在概率论中,许多重要的概率空间(如勒贝格测度空间上的概率测度)都是 σ \sigma σ有限的。

例子

考虑实数集 R \mathbb{R} R上的勒贝格测度 λ \lambda λ。虽然整个实数集的测度 λ ( R ) \lambda(\mathbb{R}) λ(R)是正无穷,但我们可以将 R \mathbb{R} R分解为可数个有限区间的并集,如 [ − n , n ] [-n, n] [n,n](其中 n n n是正整数)。每个区间 [ − n , n ] [-n, n] [n,n]的测度都是有限的(即 2 n 2n 2n),因此勒贝格测度 λ \lambda λ σ \sigma σ有限的。

综上所述, σ \sigma σ有限测度是一种重要的测度类型,它允许我们将整个空间分解为可数个测度有限的子空间,从而在某些情况下简化问题和分析过程。

计数测度

是测度论中的一个基本概念,它是一种特殊的测度,用于计算集合中元素的数量。以下是对计数测度的详细解释:

定义

X X X是一个集合,对于 X X X的任意子集 A A A,定义计数测度 μ \mu μ为:

μ ( A ) = { ∣ A ∣ , 如果  A 是有限集 ∞ , 如果  A 是无限集 \mu(A) = \begin{cases} |A|, & \text{如果 } A \text{ 是有限集} \\ \infty, & \text{如果 } A \text{ 是无限集} \end{cases} μ(A)={A,,如果 A 是有限集如果 A 是无限集

其中, ∣ A ∣ |A| A表示集合 A A A中元素的数量(即集合的基数)。

性质

  1. 非负性:对于任意集合 A ⊆ X A \subseteq X AX,都有 μ ( A ) ≥ 0 \mu(A) \geq 0 μ(A)0(因为集合中元素的数量总是非负的,或者为无穷大)。

  2. 可加性(有限可加性):如果 { A n } n = 1 N \{A_n\}_{n=1}^{N} {An}n=1N X X X中有限个两两不交的集合,那么

μ ( ⋃ n = 1 N A n ) = ∑ n = 1 N μ ( A n ) \mu\left(\bigcup_{n=1}^{N} A_n\right) = \sum_{n=1}^{N} \mu(A_n) μ(n=1NAn)=n=1Nμ(An)

即有限个不相交集合的并集的测度等于这些集合测度之和。但需要注意的是,计数测度在无限可加性上并不成立,因为无限个集合的并集可能是无限集,而其测度和可能并不等于各个集合测度之和(特别是当这些集合的测度都是正无穷时)。

  1. 单调性:如果 A ⊆ B ⊆ X A \subseteq B \subseteq X ABX,那么 μ ( A ) ≤ μ ( B ) \mu(A) \leq \mu(B) μ(A)μ(B)。即子集的测度不大于其母集的测度。

  2. 空集测度 μ ( ∅ ) = 0 \mu(\emptyset) = 0 μ()=0,即空集的测度为0。

应用

计数测度在离散数学、概率论和统计学等领域有广泛应用。例如,在概率论中,对于有限样本空间,我们可以使用计数测度来计算事件的概率(即事件包含的样本点数与总样本点数的比值)。在统计学中,计数测度可以用于计算数据集中某个特定值的出现次数。

注意

虽然计数测度在定义上允许无限集的测度为无穷大,但在实际应用中,我们通常更关注有限集或可数集上的计数测度。对于不可数集,计数测度通常不是很有用,因为我们无法直接计算其元素的数量。在这种情况下,我们可能需要使用其他类型的测度(如勒贝格测度)来描述集合的“大小”或“体积”。

完备概率测度

是概率论中的一个重要概念,它是对概率测度的一种加强,以确保某些良好的性质得以成立。以下是对完备概率测度的详细解释:

定义

( Ω , F , P ) (\Omega, \mathcal{F}, P) (Ω,F,P)是一个概率空间,其中 Ω \Omega Ω是样本空间, F \mathcal{F} F Ω \Omega Ω上的 σ \sigma σ-代数(即由 Ω \Omega Ω的子集构成的集合,满足可数并、交、补等运算的封闭性), P P P是从 F \mathcal{F} F [ 0 , 1 ] [0,1] [0,1]的映射,满足概率测度的定义(非负性、可加性、整个样本空间的测度为1)。

如果对于任意 A ∈ F A \in \mathcal{F} AF,当 P ( A ) = 0 P(A) = 0 P(A)=0时,对于任意 B ⊆ A B \subseteq A BA B ∈ F B \in \mathcal{F} BF(即 B B B A A A F \mathcal{F} F-可测子集),都有 P ( B ) = 0 P(B) = 0 P(B)=0,则称概率测度 P P P是完备的。

解释

  1. 零测集:在概率论中,一个测度为0的集合被称为零测集或零概率事件。完备性要求,如果一个集合是零测集,那么它的所有可测子集也必须是零测集。

  2. 加强性质:完备性是对概率测度的一种加强。在某些情况下,不完备的概率测度可能导致一些不期望的结果,比如某些集合的测度无法唯一确定。通过要求完备性,我们可以避免这些问题。

  3. 构造完备测度:对于不完备的概率测度,我们可以通过扩展其定义域(即增大 σ \sigma σ-代数 F \mathcal{F} F)来构造一个完备的概率测度。这通常涉及到添加所有零测集的子集到 F \mathcal{F} F中。

  4. 应用:完备概率测度在概率论和随机过程中有广泛应用。例如,在构建随机过程(如布朗运动)时,通常需要在一个完备的概率空间中进行,以确保某些良好的性质(如马尔科夫性)得以成立。

例子

考虑实数集 R \mathbb{R} R上的勒贝格测度 λ \lambda λ,并限制在区间 [ 0 , 1 ] [0,1] [0,1]上。我们可以定义一个概率测度 P P P为:

P ( A ) = λ ( A ∩ [ 0 , 1 ] ) λ ( [ 0 , 1 ] ) = λ ( A ∩ [ 0 , 1 ] ) P(A) = \frac{\lambda(A \cap [0,1])}{\lambda([0,1])} = \lambda(A \cap [0,1]) P(A)=λ([0,1])λ(A[0,1])=λ(A[0,1])

对于任意 A ⊆ R A \subseteq \mathbb{R} AR。然而,这个概率测度在 [ 0 , 1 ] [0,1] [0,1]上的勒贝格不可测集(如康托尔集)上是不完备的。为了得到一个完备的概率测度,我们需要扩展 σ \sigma σ-代数以包含所有勒贝格可测集以及它们的零测子集。

综上所述,完备概率测度是概率论中的一个重要概念,它确保了概率测度的某些良好性质得以成立,并在许多应用领域(如随机过程)中发挥着关键作用。

参考文献

1.文心一言
2.《实变函数》

这篇关于实变函数精解【18】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140924

相关文章

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

Unity3D 运动之Move函数和translate

CharacterController.Move 移动 function Move (motion : Vector3) : CollisionFlags Description描述 A more complex move function taking absolute movement deltas. 一个更加复杂的运动函数,每次都绝对运动。 Attempts to

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^