2024高教社杯全国大学生数学建模竞赛B题保姆级分析完整思路+代码+数据教学

本文主要是介绍2024高教社杯全国大学生数学建模竞赛B题保姆级分析完整思路+代码+数据教学,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024高教社杯全国大学生数学建模竞赛 B题保姆级分析完整思路+代码+数据教学

B题题目:农作物的种植策略

接下来我们将按照题目总体分析-背景分析-各小问分析的形式来

1 总体分析

题目提供了一个电子产品生产的案例,要求参赛者建立数学模型解决企业在生产过程中的一系列决策问题。以下是对题目的总体分析:

问题一需要企业需要从供应商购买零配件,并且需要设计一个抽样检测方案,来决定是否接受供应商提供的零配件。题目要求设计一个能够尽可能减少检测次数的方案,分别在95%和90%的置信度下,判断零配件的次品率是否超过标称值。这个问题的核心是基于统计学的抽样检验,涉及假设检验和置信区间的计算。需要考虑标称值为10%的情况下,如何设计抽样数量,使得在满足不同置信水平的条件下进行接收或拒收决策。

问题二则:在生产过程中,企业需要在多个阶段做出决策,包括:

  • 是否对零配件进行检测。

  • 是否对成品进行检测。

  • 是否对不合格的成品进行拆解,决定是否将拆解后的零配件重新利用。

  • 如何处理用户退回的不合格产品。

需要根据这些参数为企业提供决策依据,并且给出相应的指标结果。

问题3:扩展的生产决策问题

在问题2的基础上,问题3进一步扩展了生产过程,增加了多个零配件和工序的情况。题目提供了多达8个零配件和2道工序的组装过程,要求针对更复杂的生产流程给出具体的决策方案。这部分问题的复杂度更高,可能涉及到多阶段决策和动态规划。

问题4:基于抽样检测的决策调整

假设问题2和问题3中的次品率均通过抽样检测得到,要求重新进行生产过程中的决策。这一问题要求参赛者结合问题1中的抽样检测方法,重新审视生产流程中的决策,可能需要重新设计检测方案,优化成本和风险的平衡。

问题2和问题3中的各个决策环节都涉及到成本效益的权衡,需要建立一个数学模型来综合考虑检测成本、拆解费用、次品率、调换损失等。

动态规划或优化模型:面对问题3中的多工序、多零配件的复杂情况,可以使用动态规划或其他优化方法,来寻找到最优的决策路径。

2 背景分析

总结一下,题目的背景集中在生产过程中的质量控制和成本优化,企业需要在多个决策点上进行权衡,既要保证最终产品的质量,又要尽量减少生产和处理的成本损失。

3 各小问分析

这道题目是关于生产过程中的决策问题,涉及到电子产品制造中的抽样检测、装配、拆解、退换货等多个环节。问题分为四个主要部分,要求为企业设计优化生产决策的数学模型。

问题1:抽样检测方案建模与分析

该问题要求设计一个抽样检测方案,判断零配件的次品率是否超过标称值。在这个问题中,零配件次品率不会超过某个标称值(如10%)。我们需要在不同信度下,决定是否接受这批零配件。

建模目标:

我们需要设计一个抽样检测方案,确保:

1.在95%的信度下,判断零配件次品率超过标称值时拒收该批次零配件。

2.在90%的信度下,判断零配件次品率不超过标称值时接收该批次零配件。

1.抽样检测方案的基础理论

  1. 假设检验 我们可以使用假设检验来进行模型设计。设: p为零配件的真实次品率。 p0为标称的次品率(10%)。 我们抽取的样本数为n,次品数为x。 根据问题要求,我们可以构建两个假设: 原假设H_0:零配件次品率p\leq p_0(零配件次品率不超过标称值,接受零配件)。 备择假设H_1:零配件次品率p>p_0(零配件次品率超过标称值,拒绝零配件)。

  2. 二项分布建模 对于每个零配件,若其合格率为1-p,则每个零配件是次品的概率为p。假设我们从一批零配件中抽取了n个样本,次品的数量服从二项分布:

 

其中: n是抽样数量。 p是次品率。 X是次品的个数。 可以用正态分布近似二项分布:

 

通过正态近似,可以使用标准化公式:

 

  1. 双侧检验与置信区间

我们根据问题中95%和90%的信度要求进行双侧假设检验。信度要求分别对应的显著性水平alpha为:

95%信度:对应alpha=0.05。

90%信度:对应alpha=0.10。

在这两种情况下,分别计算不同显著性水平下的拒收与接收条件。

2.具体建模步骤

  1. 第一种情况:拒收零配件(95%信度) 我们希望设计一个方案,使得在95%信度下,认定次品率超过标称值时拒收该批零配件。 显著性水平alpha=0.05,对应的临界值Z_{\alpha/2}=1.96。 原假设为\(p=p_0=0.10\)(即零配件次品率为10%)。 拒收条件是当样本中检测出的次品率

 

足够大时,我们拒收这批零配件。 标准化变量为:

 

拒收条件为:

 

将p0=0.10代入,得到拒收条件:

 

通过这个公式,我们可以根据抽样的数量n得到拒收条件。

  1. 第二种情况:接收零配件(90%信度) 我们希望在90%信度下,判断零配件的次品率不超过标称值时接收这批零配件。 显著性水平alpha=0.10,对应的临界值Z_{\alpha/2}=1.645。 接收条件是次品率hat{p}足够低。 接收条件为:

 

将p0=0.10代入,得到接收条件:

 

  1. 确定最小抽样数量n

为了满足两种信度要求,我们可以根据上面的拒收和接收条件,计算不同情况下的最小抽样量\(n\)。

问题2:生产过程的决策建模

问题2的主要任务是对生产过程中的多个环节进行决策,优化每个阶段的检测、装配、拆解及不合格品处理,最终使得企业的总成本最小化或收益最大化。主要涉及零配件的检测、成品的检测、拆解和调换不合格品等多项决策。

根据题目描述,企业需要从成本和收益的角度优化生产过程的每个阶段。建模目标是:

- 最小化总成本(包括检测成本、装配成本、拆解费用、调换损失等)。

- 同时考虑成品的次品率及市场售价,确保利润最大化。

设定以下变量用于模型:

p_1, p_2 :零配件1和零配件2的次品率。

c_1, c_2 :零配件1和零配件2的购买单价。

d_1, d_2 :零配件1和零配件2的检测成本。

p_f :成品的次品率(由两个零配件的次品率决定,稍后说明计算方式)。

c_f :成品的装配成本。

d_f :成品的检测成本。

s_f :成品的市场售价。

t_f :调换不合格成品的损失。

e_f :拆解费用。

根据题目的描述,成品的次品率 由两个零配件的次品率决定:

- 若零配件1或零配件2中任一为次品,成品即为次品。因此,成品次品率为:

p_f = 1 - (1 - p_1)(1 - p_2)

该公式表明,只要零配件1或零配件2有任意一个不合格,则成品不合格。

成本函数的构建

接下来,我们需要根据生产过程的不同阶段构建相应的总成本函数。成本主要来自以下几个方面:

零配件检测与装配成本:

成品检测成本:

拆解成本:

对不合格成品的拆解费用为 \( e_f \),拆解后的零配件可重新使用。

调换不合格品的损失:

市场上的不合格品会引起退货和调换,损失为 \( n_f \cdot p_f \cdot t_f \)。

  1. 零配件检测决策

  2. 如果对零配件进行检测: - 总成本为:检测成本 + 购买零配件成本 + 装配成本

 

  1. 如果不检测零配件:

- 将不合格零配件直接进入装配,可能会产生成品不合格的额外成本。

(2) 成品检测决策

  1. 如果对成品进行检测: - 总成本为:检测成本 + 装配成本 + 不合格成品的拆解费用

 

  1. 如果不检测成品:

- 市场上出售的次品成品将导致退货,产生调换损失:

剩余后续更新。

其中更详细的思路,各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方群名片哦!

这篇关于2024高教社杯全国大学生数学建模竞赛B题保姆级分析完整思路+代码+数据教学的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140533

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完