Leetcode刷题笔记:多数元素(摩尔投票算法最通俗的理解)

本文主要是介绍Leetcode刷题笔记:多数元素(摩尔投票算法最通俗的理解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
关键点:

  • 给定的数组总是存在多数元素。
  • 出现次数大于 ⌊ n / 2 ⌋ \lfloor n/2\rfloor n/2

说明下面这种情况不会出现在测试用例中:

[3,3,3,2,2,2,4] 或 [3,3,3,2,2,2]

也就是刚好有2个频率等于 ⌊ n / 2 ⌋ \lfloor n/2\rfloor n/2 的元素

按照进阶要求,设计一个时间复杂度为 O(n)、空间复杂度为 O(1) 的算法,可以使用摩尔投票算法(Boyer-Moore Voting Algorithm)来解决这个问题。

摩尔投票算法

通俗地理解,这是一场战斗游戏,游戏设定战斗结束时必定有且只有1个存活者(candidate) ,最终返回的多数元素相当于存活者。战斗开始时(count==0) ,我们先把第一个元素设置为存活者,并且给第一个元素赋予初始生命值1滴血,之后的循环过程相当于是战斗过程,只要碰见一个与当前存活者相同的元素,无需战斗,就给他生命值+1滴血(count += 1),只要碰见一个和当前存活者不同的元素就需要战斗,战斗的结果就是消耗1滴血(count += -1),只要当前的 count 不为 0,当前这个存活者就还“活着”,不会被更换,直到最后,战斗结束时,必然会有一个最终的存活者,这个存活者就是多数元素。

这个“活着”的概念可以理解为 candidate 元素仍然有足够的力量继续和其他不同的元素对抗或抵消。

C++ 代码实现:

#include <vector>class Solution {
public:int majorityElement(std::vector<int>& nums) {//初始化计数器和候选者int count = 0;int candidate = 0;// 摩尔投票算法for (int num : nums) {//首先,设置或更换 candidate(在计数器为 0 时)。//如果是第一个元素则是设置,否则是被抵消完之后的更新if (count == 0) {candidate = num;}//然后,根据当前元素是否与当前候选者相同对计数器进行更新count += (num == candidate) ? 1 : -1;}//循环结束,返回多数元素return candidate;}
};

刚进入for循环时,变量 count 的值并非是当前 candidate 元素的总出现次数,而是当前循环步骤中当前 candidate 元素经过抵消后的出现次数。

当我们遇到一个与当前 candidate 不相同的元素时,count 减 1 是因为这些不同的元素可能代表着一个和 candidate 具有相同频率的另一类元素。因此,我们可以将当前的 candidate 和这个不同的元素看作是一对“相互抵消”的元素。

candidate 变量存储当前的候选元素。

具体过程可以这样理解:

  • 当我们遇到与 candidate 相同的元素时,count 增加,表示它的力量增强。
  • 当我们遇到与 candidate 不同的元素时,count 减少,表示它与这个不同元素互相抵消了一部分力量。
  • 只有当 count 减少到 0 时,表示当前的 candidate 被完全抵消掉了,它已经没有足够的力量继续作为候选元素,此时我们需要选择一个新的元素作为新的 candidate

所以,只要 count 不为 0,当前的 candidate 还在“战斗”,它还是有可能是多数元素,只有当它被完全抵消(count = 0)时,才会更换新的候选者。

这个“抵消战斗”的机制确保了多数元素(出现次数超过一半的那个元素)在整个数组遍历过程中会存活下来,并最终成为剩下的那个“胜者”。

count == 0 的可能情况

当前元素是数组的第一个元素时 count 为 0 外,还有另一种情况会导致计数为 0,即 候选元素和其他不同元素相互抵消 的过程中。

具体来说,当候选元素的计数减少到 0 时,说明之前的候选元素已经被后续元素抵消完了(遇到了和候选元素出现次数一样多的与候选元素不相同的元素)。在这种情况下,算法认为当前的候选元素不再是有效的多数元素,因此需要选择下一个未抵消的元素作为新的候选者。这发生的场景通常是:

  1. 候选元素的频率和非候选元素频率相同:如果数组中存在的元素并不是立即连续重复的,当前候选元素可能会逐渐被其他元素的不同值抵消,最终 count 变为 0。例如[3,2,3,4,3,6,3]count 的变化情况是[1,0,1,0,1,0,1],在经过元素 6 的循环步骤之后,count == 0 ,由于题目描述必定存在多数元素,所以最后一个元素必定是 3。经过最后一次循环步骤之后,count == 1

  2. 当前候选元素遇到了足够多的与它不同的元素:当某一个候选元素不断被与它不同的元素抵消时,count 逐渐减少到 0,此时下一个未抵消的元素会成为新的候选者。例如[3,3,3,1,4,7,3]count 的变化情况是[1,2,3,2,1,0,1],在经过元素 7 的循环步骤之后,count == 0 ,同样,由于题目描述必定存在多数元素,所以最后一个元素必定是 3。经过最后一次循环步骤之后,count == 1

这个算法的时间复杂度是 O(n),因为我们只需要遍历一次数组,空间复杂度是 O(1),因为我们只使用了常量级别的额外空间。

这篇关于Leetcode刷题笔记:多数元素(摩尔投票算法最通俗的理解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140454

相关文章

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。