Python线程 适合I/O处理以及涉及阻塞操作的并发执行任务,不适合计算密集型

本文主要是介绍Python线程 适合I/O处理以及涉及阻塞操作的并发执行任务,不适合计算密集型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 为什么这种情况适合 I/O 和阻塞操作?
    • 1. I/O 操作和阻塞操作的特点:
      • I/O 操作:
      • 阻塞操作:
    • 2. GIL 对计算密集型任务的影响:
      • 计算密集型任务:
      • GIL 的限制:
    • 3. I/O 和阻塞操作的优势:
      • I/O 操作的非 CPU 密集性:
      • 多线程的并发性:
    • 具体示例:
      • 计算密集型任务:
      • I/O 密集型任务:
    • 总结:

全局解释器锁(Global Interpreter Lock,GIL)是 Python 解释器的一种机制,它确保在任意时刻只有一个线程在执行 Python 字节码。这意味着即使在多核处理器上,Python 线程也不能真正并行执行计算密集型任务,因为 GIL 限制了同一时刻只能有一个线程在解释器中运行。

为什么这种情况适合 I/O 和阻塞操作?

1. I/O 操作和阻塞操作的特点:

I/O 操作:

包括文件读写、网络通信、数据库查询等,这些操作通常需要等待外部设备或系统的响应。

阻塞操作:

指的是程序在等待某些事件(如 I/O 完成、锁释放)时会暂停执行。

2. GIL 对计算密集型任务的影响:

计算密集型任务:

这些任务主要依赖 CPU 进行大量计算,如数值计算、图像处理等。

GIL 的限制:

由于 GIL 的存在,计算密集型任务在多线程环境下不能充分利用多核 CPU 的优势,因为同一时刻只有一个线程在执行 Python 代码。

3. I/O 和阻塞操作的优势:

I/O 操作的非 CPU 密集性:

I/O 操作主要依赖于外部设备的响应,而不是 CPU 的计算能力。在等待 I/O 完成的过程中,线程会被阻塞,释放 GIL,使其他线程可以运行。

多线程的并发性:

在多线程环境下,当一个线程等待 I/O 操作完成时,其他线程可以继续执行。这种并发性使得多线程在处理 I/O 密集型任务时非常高效。

具体示例:

计算密集型任务:

假设我们有一个计算密集型任务,如计算大量数字的平方和。在多线程环境下,由于 GIL 的存在,多个线程不能同时执行计算任务,导致性能提升有限。

import threadingdef compute():result = 0for i in range(1000000):result += i * iprint(result)threads = []
for _ in range(4):thread = threading.Thread(target=compute)threads.append(thread)thread.start()for thread in threads:thread.join()

I/O 密集型任务:

假设我们有一个 I/O 密集型任务,如从多个 URL 下载数据。在多线程环境下,当一个线程等待网络响应时,其他线程可以继续执行下载任务,从而提高效率。

import threading
import requestsdef download(url):response = requests.get(url)print(f"Downloaded {len(response.content)} bytes from {url}")urls = ['http://example.com','http://example.org','http://example.net','http://example.edu'
]threads = []
for url in urls:thread = threading.Thread(target=download, args=(url,))threads.append(thread)thread.start()for thread in threads:thread.join()

总结:

由于 GIL 的存在,Python 线程在处理计算密集型任务时无法充分利用多核 CPU 的优势,因此不适合用于计算密集型任务。然而,对于 I/O 密集型任务和涉及阻塞操作的任务,多线程可以在等待 I/O 完成时释放 GIL,使其他线程继续执行,从而提高并发性和效率。因此,Python 线程更适合用于处理 I/O 和阻塞操作。

这篇关于Python线程 适合I/O处理以及涉及阻塞操作的并发执行任务,不适合计算密集型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140111

相关文章

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学