神仙级AI大模型入门教程(非常详细),从零基础入门到精通,从看这篇开始!

本文主要是介绍神仙级AI大模型入门教程(非常详细),从零基础入门到精通,从看这篇开始!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.初聊大模型

1.为什么要学习大模型?

在学习大模型之前,你不必担心自己缺乏相关知识或认为这太难。我坚信,只要你有学习的意愿并付出努力,你就能够掌握大模型,并能够用它们完成许多有意义的事情。在这个快速变化的时代,虽然新技术和概念不断涌现,但希望你能静下心来,踏实地学习。一旦你精通了某项技术,你就能够用它来实现自己的目标,甚至可能找到理想的工作或完成具有挑战性的项目。

在众多的技术中,大模型因其强大的功能和广泛的应用而备受推崇。

那么,为什么要学习大模型呢?

首先,大模型在处理复杂数据和任务时展现出无与伦比的能力,如自然语言处理、图像识别和生成等。其次,大模型能够处理大量的数据,这对于数据挖掘、信息检索和知识发现等领域至关重要。此外,大模型也在推动人工智能的前沿发展,如自动化测试、网络安全和智能决策系统等。

大模型的学习不仅能够提升你的技术能力,还能够帮助你更好地理解数据科学和人工智能的原理。随着大模型在各个行业的应用越来越广泛,掌握这一技术将为你提供更多的职业机会。从科学研究到商业应用,从金融服务到医疗保健,大模型正在成为推动创新和效率提升的关键因素。

学习大模型不仅是因为它们在当今和未来的技术领域中占据重要地位,更是因为它们有能力解决复杂问题并创造新的可能性。

图片

2.大模型的优势

大模型最大的优势在于其强大的功能和广泛的应用。有时候,研究人员或开发者的需求不仅仅是快速的运行速度,而是能够处理复杂问题的能力。对于很多挑战性的任务,使用大模型能够大大减轻程序设计的负担,从而显著提高项目的质量。其易用性和灵活性也能让新手迅速上手。

虽然大模型在底层运算上可能不如一些特定的算法快速,但大模型清晰的结构和强大的能力能够解放开发者的大量时间,同时也能方便地与其他技术(如传统机器学习算法)结合使用。

因此,从来没有一种技术能够像大模型这样同时深入到这么多领域,并且大模型支持跨平台操作,也支持开源,拥有丰富的预训练模型。尤其随着人工智能的持续火热,大模型 在学术界和工业界的关注度持续攀升,越来越多的技术爱好者、行业关注者也都开始学习和应用大模型。

图片

3、大模型学习建议

在学习大模型的过程中,不要因为自己的基础薄弱或者之前没有接触过相关领域就想要放弃。记住,很多人在起跑线前就选择退出,但只要你沉下心来,愿意付出努力,就一定能够掌握。在学习的过程中,一定要亲自动手去实践,因为只有通过编写代码、实际操作,你才能够逐渐积累经验。

同时,遇到错误和挑战也是不可避免的,甚至可以说是学习的一部分。当你遇到错误时,学会利用各种资源去解决,比如搜索引擎、开源论坛、社区和学习群组,这些都是你提升学习能力的好帮手。如果实在找不到错误的解决办法,可以来公众号或者相关学习平台上寻求帮助。

接下来,我为你提供一份大模型学习路径的参考,包括:基础知识了解、理论学习、实践操作、专项深入、项目应用、拓展研究等步骤。你可以根据这个路径,结合自己的实际情况,制定合适的学习计划。

这里,我分享一些学习大模型的历程和技巧。我最初接触大模型是因为工作需要,那时大模型还没有像现在这样普及,资料也相对较少。但通过坚持学习,我也逐渐掌握了大模型的应用。以下是一些建议:

先从了解大模型的基础知识开始,可以通过阅读相关书籍、学术论文或者参加在线课程。

学习过程中不要只看理论知识,一定要动手实践。可以尝试使用一些开源的大模型框架,如TensorFlow、PyTorch等,进行实际操作。

在掌握基础理论后,可以尝试参与一些实际项目,比如数据分析、自然语言处理、图像识别等,将理论应用到实践中。遇到问题时不要害怕,要学会利用网络资源、开源社区和专业论坛寻求帮助。

不断深化学习,可以参加一些专业培训课程,或者深入研究最新的学术论文,保持对大模型领域的最新动态的了解。

学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:

If not now, when? If not me, who?

如果不是为了自己奋斗,又是为谁;如果不是现在奋斗,什么时候开始呢?

关于大模型技术储备

学好大模型不论是对就业还是开展副业赚钱都非常有利,但要想掌握大模型技术,还是需要有一个明确的学习规划。这里,我为大家分享一份完整的大模型学习资料,希望能帮助那些想要学习大模型的小伙伴们。

AI大模型入门基础教程

第1章 快速上手:人工智能演进与大模型崛起

1.1 从AI到AIOps

1.2 人工智能与通用人工智能

1.3 GPT模型的发展历程

第2章 大语言模型基础

2.1 Transformer 模型

嵌入表示层

注意力层

前馈层

残差连接与层归一化

编码器和解码器结构

2.2 生成式预训练语言模型 GPT

无监督预训练

有监督下游任务微调

基于 HuggingFace 的预训练语言模型实践

2.3 大语言模型结构

LLaMA 的模型结构

注意力机制优化

第3章 大语言模型基础

3.1 数据来源

通用数据

专业数据

3.2 数据处理

低质过滤

冗余去除

隐私消除

词元切分

3.3 数据影响分析

数据规模影响

数据质量影响

数据多样性影响

3.4 开源数据集合

Pile

ROOTS

RefinedWeb

SlimPajama

图片

第4章 分布式训练

4.1 分布式训练概述
4.2 分布式训练并行策略

  • 数据并行
  • 模型并行
  • 混合并行
  • 计算设备内存优化

4.3 分布式训练的集群架构

  • 高性能计算集群硬件组成
  • 参数服务器架构
  • 去中心化架构

4.4 DeepSpeed 实践

  • 基础概念
  • LLaMA 分布式训练实践

图片

第5章 有监督微调

5.1 提示学习和语境学习

提示学习

语境学习

5.2 高效模型微调

LoRA

LoRA 的变体

5.3 模型上下文窗口扩展

具有外推能力的位置编码

插值法

5.4 指令数据构建

手动构建指令

自动生成指令

开源指令数据集

5.5 Deepspeed-Chat SFT 实践

代码结构

数据预处理

自定义模型

模型训练

模型推

第6章 强化学习

6.1 基于人类反馈的强化学习

6.2 奖励模型

6.3 近端策略优化

6.4 MOSS-RLHF 实践

第7章 大语言模型应用

7.1 推理规划

7.2 综合应用框架

7.3 智能代理

7.4 多模态大模型

7.5 大语言模型推理优化

第8章 大语言模型评估

8.1 模型评估概述

8.2 大语言模型评估体系

8.3 大语言模型评估方法

8.4 大语言模型评估实践

总结

坚持到了这儿,恭喜你,表示你有做AI大模型工程师的潜力。其实我想说的上面的内容只是冰山一角,刚开始大家不需要多么精通了解这些内容。主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。

记住,学习是一个持续的过程。大模型技术日新月异,每天都有新的研究成果和技术突破。要保持对知识的渴望,不断学习最新的技术和算法。同时,实践是检验学习成果的最佳方式。通过实际项目实践,你将能够将理论知识转化为实际能力,不断提升自己的技术实力。

最后,不要忘记与同行交流和学习。AI大模型领域有许多优秀的专家和社区,他们可以为你提供宝贵的指导和建议。参加技术交流会、阅读论文、加入专业论坛,这些都是提升自己技术水平的好方法。

祝愿你在AI大模型的学习之旅中取得丰硕的成果,开启属于你的AI大模型时代!

这篇关于神仙级AI大模型入门教程(非常详细),从零基础入门到精通,从看这篇开始!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139569

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验