pytorch 模型部署

2024-09-05 17:12
文章标签 部署 模型 pytorch

本文主要是介绍pytorch 模型部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI模型部署基本步骤

在训练好模型后,需要将模型进行部署,一般情况下,AI模型部署基本步骤有:

  • 获取模型文件
  • 对模型进行转换,也就是所谓的parse或者convert
  • 针对转换后的模型进行优化,可能涉及很多优化步骤
  • 在特定平台上运行转化后的模型,保障模型的精度、性能

常见的模型部署推理框架:

  • Caffeine,纯c++编写
  • libtorch(torchscript): pytorch的c++版。pytorch训练出来的模型,经员工torch.jit.trace或者torch.jit.script可以导出为.pt格式,随用通过libtorch中的API加载运行。一般结合TensorRT来部署,TensorRT负责简单卷积层等操作部分,libtorch负责后处理等细小复杂op部分。
  • TensorRT,可以再NVIDIA各种GPU硬件平台下运行的c++推理框架。 在GPU服务器上部署的话,TensorRT是首选;
  • openVINO, 在英特尔CPU端(也就是我们常用的x86处理器)部署首选它
  • NCNN/MNN/TNN/TVM,在移动端部署的推理框架,据说NCNN为首选,因其简单、直观明了。
  • paddlepaddle:国产不错的训练和推理框架;

AI部署中提速方法

上述AI模型部署步骤也提到,对模型进行优化,有哪些优化点呢?

  • 模型结构
  • 剪枝
  • 蒸馏
  • 稀疏化训练
  • 量化训练
  • 算子融合、计算图优化
  • 底层优化
1. 模型结构

模型结构主要体现在更快更强的网络结构,比如ResNet相比于VGG,CenterNet相比于YOLOv3。这块没研究透,后续再探;

2. 剪枝

大模型的基础上,对模型通道或者模型结构进行有目的地修剪,剪掉对模型推理贡献不是很重要的地方,保障精度下降很少或者几乎不变。

3. 蒸馏

先用大网络训练,然后再用大网络调教小网络,使小网络接近大网络的精度。

4. 稀疏化

就是随机将tensor中的部分元素置为0,比如常见的dropout,附带正则化作用的同时也减少了模型的容量,从而加快了模型的推理速度。

5. 量化训练

量化训练是在INT8精度的基础上对模型进行量化。简称QTA(Quantization Aware Training)。量化后的模型在特定CPU或者GPU上相比FP32、FP16有更高的速度和吞吐,也是部署提速方法之一。

模型训练后的转换方式

  • Pytorch->ONNX->trt onnx2trt
  • Pytorch->trt torch2trt
  • Pytorch->torchscipt->trt trtorch

这篇关于pytorch 模型部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139567

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Jenkins中自动化部署Spring Boot项目的全过程

《Jenkins中自动化部署SpringBoot项目的全过程》:本文主要介绍如何使用Jenkins从Git仓库拉取SpringBoot项目并进行自动化部署,通过配置Jenkins任务,实现项目的... 目录准备工作启动 Jenkins配置 Jenkins创建及配置任务源码管理构建触发器构建构建后操作构建任务

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

若依部署Nginx和Tomcat全过程

《若依部署Nginx和Tomcat全过程》文章总结了两种部署方法:Nginx部署和Tomcat部署,Nginx部署包括打包、将dist文件拉到指定目录、配置nginx.conf等步骤,Tomcat部署... 目录Nginx部署后端部署Tomcat部署出现问题:点击刷新404总结Nginx部署第一步:打包

Nginx、Tomcat等项目部署问题以及解决流程

《Nginx、Tomcat等项目部署问题以及解决流程》本文总结了项目部署中常见的four类问题及其解决方法:Nginx未按预期显示结果、端口未开启、日志分析的重要性以及开发环境与生产环境运行结果不一致... 目录前言1. Nginx部署后未按预期显示结果1.1 查看Nginx的启动情况1.2 解决启动失败的

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了