pytorch 模型部署

2024-09-05 17:12
文章标签 部署 模型 pytorch

本文主要是介绍pytorch 模型部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI模型部署基本步骤

在训练好模型后,需要将模型进行部署,一般情况下,AI模型部署基本步骤有:

  • 获取模型文件
  • 对模型进行转换,也就是所谓的parse或者convert
  • 针对转换后的模型进行优化,可能涉及很多优化步骤
  • 在特定平台上运行转化后的模型,保障模型的精度、性能

常见的模型部署推理框架:

  • Caffeine,纯c++编写
  • libtorch(torchscript): pytorch的c++版。pytorch训练出来的模型,经员工torch.jit.trace或者torch.jit.script可以导出为.pt格式,随用通过libtorch中的API加载运行。一般结合TensorRT来部署,TensorRT负责简单卷积层等操作部分,libtorch负责后处理等细小复杂op部分。
  • TensorRT,可以再NVIDIA各种GPU硬件平台下运行的c++推理框架。 在GPU服务器上部署的话,TensorRT是首选;
  • openVINO, 在英特尔CPU端(也就是我们常用的x86处理器)部署首选它
  • NCNN/MNN/TNN/TVM,在移动端部署的推理框架,据说NCNN为首选,因其简单、直观明了。
  • paddlepaddle:国产不错的训练和推理框架;

AI部署中提速方法

上述AI模型部署步骤也提到,对模型进行优化,有哪些优化点呢?

  • 模型结构
  • 剪枝
  • 蒸馏
  • 稀疏化训练
  • 量化训练
  • 算子融合、计算图优化
  • 底层优化
1. 模型结构

模型结构主要体现在更快更强的网络结构,比如ResNet相比于VGG,CenterNet相比于YOLOv3。这块没研究透,后续再探;

2. 剪枝

大模型的基础上,对模型通道或者模型结构进行有目的地修剪,剪掉对模型推理贡献不是很重要的地方,保障精度下降很少或者几乎不变。

3. 蒸馏

先用大网络训练,然后再用大网络调教小网络,使小网络接近大网络的精度。

4. 稀疏化

就是随机将tensor中的部分元素置为0,比如常见的dropout,附带正则化作用的同时也减少了模型的容量,从而加快了模型的推理速度。

5. 量化训练

量化训练是在INT8精度的基础上对模型进行量化。简称QTA(Quantization Aware Training)。量化后的模型在特定CPU或者GPU上相比FP32、FP16有更高的速度和吞吐,也是部署提速方法之一。

模型训练后的转换方式

  • Pytorch->ONNX->trt onnx2trt
  • Pytorch->trt torch2trt
  • Pytorch->torchscipt->trt trtorch

这篇关于pytorch 模型部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139567

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件

《如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件》本文介绍了如何使用Docker部署FTP服务器和Nginx,并通过HTTP访问FTP中的文件,通过将FTP数据目录挂载到N... 目录docker部署FTP和Nginx并通过HTTP访问FTP里的文件1. 部署 FTP 服务器 (

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo