【POJ】2728 Desert King 最优比率生成树——01分数规划【经典】

2024-09-05 15:38

本文主要是介绍【POJ】2728 Desert King 最优比率生成树——01分数规划【经典】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在刷巨巨们放出来的专题,然后没做几题就卡住了,果然还是太弱了T U T...

这次做到了一题01分数规划求解的生成树问题。

题目大意是这样的:给你一个无向完全图,每条边i都有两个权值,长度a[ i ],花费b[ i ],需要选出其中的一些边构造一颗生成树,生成树需要满足条件:∑ b [ i ] / ∑ a [ i ]最小。

这样我还是先来介绍一下01分数规划吧~


给定一个上述的问题,我们可以设R = ∑x[ i ] * b[ i ] / ∑x[ i ] * a[ i ],其中x[ i ]为0或1表示边i取或者不取。

这里我们先假设对于所有的可行解x[ i ],a[ i ] * x[ i ]都是正数。

我们需要求R的最小值,那么不妨先设一个子问题Q(L) = ∑x[ i ] * b[ i ] - L * ∑x[ i ] * a[ i ] 的最小值,然后我们需要求满足条件(即它是一棵生成树)的L的最小值。

易知L就是R,所以问题等价于求R的最小值

首先我们先对Q(L)移项得:Q(L) = ∑x[ i ] * ( b[ i ] - R * a[ i ] )。

如果我们已知L,那么b[ i ] - L * a[ i ]也是已知的,所以子问题只和两个参数L,x[ i ]有关。并且对于一个L,x[ i ]的选取不同,将可能会导致Q(L)的取值不同。

现在我们假设Q(L) < 0 ,那么我们能得到什么信息?

根据Q(L) = ∑x[ i ] * ( b[ i ] - L * a[ i ] ) < 0 可以推出∑x[ i ] * b[ i ] / ∑x[ i ] * a[ i ] < L ,那么就说明我们找到了一个比R更优的解!为什么不选择更优一点的解呢~

如果Q(L) < 0,那么这时候比L小的解都是不是最优的,自然不需要了。(其实应该理解为它们都是意义的)

当然如果Q(L) = 0,那么我们找到了一个可行解R=L,但是不是最优解,暂时我们还不知道。

如果函数Q(L)满足单调性,则说明如果存在Q(L) = 0,则有且只有这一个解,并且这个解就是我们需要的答案。

证明:

假设L2 > L1,令X[ i ]是L2的一组解向量,Y[ i ]是L1的一组解向量。

那么Q(L2) = ∑X[ i ] * b[ i ] - L2 * ∑X[ i ] * a[ i ] , Q(L1) =∑Y[ i ] * b[ i ] - L1 * ∑Y[ i ] * a[ i ]。

易知∑Y[ i ] * b[ i ] - L2 * ∑Y[ i ] * a[ i ] >= ∑X[ i ] * b[ i ] - L2 * ∑X[ i ] * a[ i ](因为X[ i ],Y[ i ]分别是Q(L2),Q(L1)最小值对应的解向量,所以Y[ i ]放到L2中去一定不会比最小值还小。

所以有:Q(L2) - Q(L1) = ( ∑X[ i ] * b[ i ] - L2 * ∑X[ i ] * a[ i ] ) -( ∑Y[ i ] * b[ i ] - L1 * ∑Y[ i ] * a[ i ] ) <=

                                           ( ∑Y[ i ] * b[ i ] - L2 * ∑Y[ i ] * a[ i ] ) - ( ∑Y[ i ] * b[ i ] - L1 * ∑Y[ i ] * a[ i ] ) =

                                            ( L1 - L2 ) * ∑Y[ i ] * a[ i ] < 0 ( Y[ i ] > 0,a[ i ] > 0 )

因此我们得到了对于L2 > L1,Q(L2) < Q(L1),所以函数Q(L)单调递减。

所以根据Q(L)的单调性,我们很容易知道当Q(L) = 0的时候,R = L 取得最小值。

另外,假设L*是Q(L) = 0时的最优解:

Q(L) > 0
当且仅当
L < L*

Q(L) = 0
当且仅当
L = L*

Q(L) < 0
当且仅当
L > L*


现在我们可以通过二分法来寻找R值或者通过Dinkelbach算法迭代求解。

不同的情况下,两种算法会发挥不同的效果,视情况而定。


传送门:【POJ】2728 Desert King


题目大意:给你一个无向完全图,每条边i都有两个权值,长度a[ i ],花费b[ i ],需要选出其中的一些边构造一颗生成树,生成树需要满足条件:∑ b [ i ] / ∑ a [ i ]最小。


题目分析:01分数规划——最优比率生成树。经典题!!!

本题二分明显没有迭代的效率高。

二分解法:

求出Q(L) = height[ i ] - R * length[ i ]

Q(L) <= 0 则移动上界,否则移动下界


二分代码:


//1454ms
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REPV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define clear( a , x ) memset ( a , x , sizeof a )const int MAXN = 1005 ;
const double INF = 1e18 ;
const double eps = 1e-5 ;struct Point {double x , y , h ;void input () {scanf ( "%lf%lf%lf" , &x , &y , &h ) ;}
} ;struct MST {Point point[MAXN] ;double G[MAXN][MAXN] ;double length[MAXN][MAXN] ;double height[MAXN][MAXN] ;double d[MAXN] ;bool vis[MAXN] ;int fa[MAXN] ;int n ;double dist ( double x , double y ) {return sqrt ( x * x + y * y ) ;}void input () {REP ( i , n )point[i].input () ;REPF ( i , 0 , n - 1 )REPF ( j , i + 1 , n - 1 ) {length[i][j] = length[j][i] = dist ( point[i].x - point[j].x , point[i].y - point[j].y ) ;height[i][j] = height[j][i] = fabs ( point[i].h - point[j].h ) ;}REP ( i , n )height[i][i] = length[i][i] = G[i][i] = 0 ;}void cal ( double r ) {REPF ( i , 0 , n - 1 )REPF ( j , i + 1 , n - 1 )G[i][j] = G[j][i] = height[i][j] - r * length[i][j] ;}double prim ( double r ) {cal ( r ) ;REP ( i , n )d[i] = INF ;clear ( vis , 0 ) ;d[0] = 0 ;fa[0] = 0 ;double ans = 0 , m ;int x ;REP ( _ , n ) {m = INF ;REP ( i , n )if ( !vis[i] && m > d[i] )m = d[x = i] ;vis[x] = 1 ;ans += m ;REP ( i , n )if ( !vis[i] && d[i] > G[x][i] )d[i] = G[x][i] , fa[i] = x ;}return ans ;}void solve () {input () ;double mid , l = 0 , r = 100 ;while ( fabs ( r - l ) > eps ) {mid = ( l + r ) / 2 ;if ( prim ( mid ) <= eps )r = mid ;elsel = mid ;}printf ( "%.3f\n" , l ) ;}
} ;MST z ;int main () {while ( ~scanf ( "%d" , &z.n ) && z.n )z.solve () ;return 0 ;
}



Dinkelbach算法:

设初值0,第一次带入求出的Q(L)一定大于0,但是得到的L带入第二次得到的一定小于0,然后就不断的迭代直到Q(L) = 0。


迭代代码:


//282ms
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REPV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define clear( a , x ) memset ( a , x , sizeof a )const int MAXN = 1005 ;
const double INF = 1e18 ;
const double eps = 1e-5 ;struct Point {double x , y , h ;void input () {scanf ( "%lf%lf%lf" , &x , &y , &h ) ;}
} ;struct MST {Point point[MAXN] ;double G[MAXN][MAXN] ;double length[MAXN][MAXN] ;double height[MAXN][MAXN] ;double d[MAXN] ;bool vis[MAXN] ;int fa[MAXN] ;int n ;double dist ( double x , double y ) {return sqrt ( x * x + y * y ) ;}void input () {REP ( i , n )point[i].input () ;REPF ( i , 0 , n - 1 )REPF ( j , i + 1 , n - 1 ) {length[i][j] = length[j][i] = dist ( point[i].x - point[j].x , point[i].y - point[j].y ) ;height[i][j] = height[j][i] = fabs ( point[i].h - point[j].h ) ;}REP ( i , n )height[i][i] = length[i][i] = G[i][i] = 0 ;}void cal ( double r ) {REPF ( i , 0 , n - 1 )REPF ( j , i + 1 , n - 1 )G[i][j] = G[j][i] = height[i][j] - r * length[i][j] ;}double prim ( double r ) {cal ( r ) ;REP ( i , n )d[i] = INF ;clear ( vis , 0 ) ;d[0] = 0 ;fa[0] = 0 ;double a = 0 , b = 0 , m ;int x ;REP ( _ , n ) {m = INF ;REP ( i , n )if ( !vis[i] && m > d[i] )m = d[x = i] ;a += length[fa[x]][x] ;b += height[fa[x]][x] ;vis[x] = 1 ;REP ( i , n )if ( !vis[i] && d[i] > G[x][i] )d[i] = G[x][i] , fa[i] = x ;}return b / a ;}void solve () {input () ;double res = 0 , tmp ;while ( 1 ) {tmp = prim ( res ) ;if ( fabs ( tmp - res ) <= eps )break ;res = tmp ;}printf ( "%.3f\n" , res ) ;}
} ;MST z ;int main () {while ( ~scanf ( "%d" , &z.n ) && z.n )z.solve () ;return 0 ;
}


这篇关于【POJ】2728 Desert King 最优比率生成树——01分数规划【经典】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139371

相关文章

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

C/C++随机数生成的五种方法

《C/C++随机数生成的五种方法》C++作为一种古老的编程语言,其随机数生成的方法已经经历了多次的变革,早期的C++版本使用的是rand()函数和RAND_MAX常量,这种方法虽然简单,但并不总是提供... 目录C/C++ 随机数生成方法1. 使用 rand() 和 srand()2. 使用 <random

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

nginx生成自签名SSL证书配置HTTPS的实现

《nginx生成自签名SSL证书配置HTTPS的实现》本文主要介绍在Nginx中生成自签名SSL证书并配置HTTPS,包括安装Nginx、创建证书、配置证书以及测试访问,具有一定的参考价值,感兴趣的可... 目录一、安装nginx二、创建证书三、配置证书并验证四、测试一、安装nginxnginx必须有"-

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje