【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】

2024-09-05 14:08

本文主要是介绍【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【51nod】算法马拉松4 F 移数字

涉及知识点:多项式求逆,多项式除法,多点插值,阶乘取模。

对于N!%P,复杂度为 O(Nlog2N)
但常数巨大,和暴力算实际复杂度只相差常数= =
这个是可以扩展到组合数取模的~

my  code:

#include <stdio.h>
#include <string.h>
#include <map>
#include <math.h>
#include <vector>
#include <algorithm>
using namespace std ;typedef long long LL ;
typedef long long Int ;
#define clr( a , x ) memset ( a , x , sizeof a )
#define ls ( o << 1 )
#define rs ( o << 1 | 1 )
#define lson ls , l , m
#define rson rs , m + 1 , r
#define root 1 , 1 , Sqrt
#define mid ( ( l + r ) >> 1 )const int MAXN = 300005 ;vector < int > M[MAXN << 2] ;
vector < int > F[MAXN << 2] ;
int x1[MAXN] , x2[MAXN] , x3[MAXN] , tmp[MAXN] ;
int A[MAXN] , B[MAXN] , R[MAXN] ;
int a[MAXN] ;
int mod , g ;
int S[MAXN] , top ;
int n ;
int ans ;
int Sqrt ;int exgcd ( int a , int b , int& x , int& y ) {if ( b ) {exgcd ( b , a % b , y , x ) ;y -= a / b * x ;} else {x = 1 ;y = 0 ;}
}int inv ( int a ) {int x , y , b = mod ;exgcd ( a , b , x , y ) ;if ( x < 0 ) x += mod ;return x ;
}int powmod ( int a , int b ) {int res = 1 , tmp = a ;while ( b ) {if ( b & 1 ) res = ( LL ) res * tmp % mod ;tmp = ( LL ) tmp * tmp % mod ;b >>= 1 ;}return res ;
}void DFT ( int y[] , int n , int rev ) {for ( int i = 1 , j , k , t ; i < n ; ++ i ) {for ( j = 0 , k = n >> 1 , t = i ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;if ( i < j ) swap ( y[i] , y[j] ) ;}for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {int wn = powmod ( g , ( mod - 1 ) / s ) ;if ( rev ) wn = inv ( wn ) ;for ( int k = 0 ; k < n ; k += s ) {LL w = 1 , t ;for ( int i = k ; i < k + ds ; ++ i , w = w * wn % mod ) {y[i + ds] = ( y[i] - ( t = w * y[i + ds] % mod ) + mod ) % mod ;y[i] = ( y[i] + t ) % mod ;}}}
}void INV ( int A[] , int B[] , int n ) {B[0] = inv ( A[0] ) ;int i , n1 , t , vn , s , ds ;for ( s = 2 , ds = 1 ; ds < n ; ds = s , s <<= 1 ) {n1 = ( s << 1 ) , t = min ( s , n ) , vn = inv ( n1 ) ;for ( i = 0 ; i < t ; ++ i ) tmp[i] = A[i] ;for ( i = t ; i < n1 ; ++ i ) tmp[i] = 0 ;DFT ( tmp , n1 , 0 ) ;DFT ( B , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) B[i] = B[i] * ( 2 - ( LL ) tmp[i] * B[i] % mod + mod ) % mod ;DFT ( B , n1 , 1 ) ;for ( i = 0 ; i < t ; ++ i ) B[i] = ( LL ) B[i] * vn % mod ;for ( i = t ; i < n1 ; ++ i ) B[i] = 0 ;}
}void DIV ( int A[] , int B[] , int R[] , int n , int m ) {int n1 = 1 , n2 = n - m + 1 , i ;while ( n1 <= n * 2 ) n1 <<= 1 ;for ( i = 0 ; i < n ; ++ i ) x1[i] = A[n - i - 1] ;for ( i = 0 ; i < m ; ++ i ) x2[i] = B[m - i - 1] ;for ( i = m ; i < n2 ; ++ i ) x2[i] = 0 ;for ( i = n2 ; i < n1 ; ++ i ) x1[i] = x2[i] = 0 ;for ( i = 0 ; i < n1 ; ++ i ) x3[i] = 0 ;INV ( x2 , x3 , n2 ) ;DFT ( x1 , n1 , 0 ) ;DFT ( x3 , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x1[i] = ( LL ) x1[i] * x3[i] % mod ;DFT ( x1 , n1 , 1 ) ;int vn = inv ( n1 ) ;for ( i = 0 ; i < n2 ; ++ i ) x2[n2 - i - 1] = ( LL ) x1[i] * vn % mod ;for ( i = n2 ; i < n1 ; ++ i ) x2[i] = 0 ;for ( i = m ; i < n1 ; ++ i ) B[i] = 0 ;DFT ( x2 , n1 , 0 ) ;DFT ( B , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x2[i] = ( LL ) x2[i] * B[i] % mod ;DFT ( x2 , n1 , 1 ) ;for ( i = 0 ; i < m - 1 ; ++ i ) {R[i] = A[i] - ( LL ) x2[i] * vn % mod ;if ( R[i] < 0 ) R[i] += mod ;}
}void preprocess ( int n ) {top = 0 ;int i , flag ;for ( i = 2 ; i * i <= n ; ++ i ) {if ( n % i == 0 ) {S[top ++] = i ;while ( n % i == 0 ) n /= i ;}}if ( n > 1 ) S[top ++] = n ;for ( g = 1 ; ; ++ g ) {flag = 1 ;for ( i = 0 ; i < top ; ++ i ) {if ( powmod ( g , ( mod - 1 ) / S[i] ) == 1 ) {flag = 0 ;break ;}}if ( flag ) return ;}
}void deal ( vector < int > & F , vector < int > & F1 , vector < int > & F2 , int sz ) {int n = F1.size () , m = F2.size () , n1 = 1 , i ;while ( n1 < n + m ) n1 <<= 1 ;for ( i = 0 ; i < n ; ++ i ) x1[i] = F1[i] ;for ( i = 0 ; i < m ; ++ i ) x2[i] = F2[i] ;for ( i = n ; i < n1 ; ++ i ) x1[i] = 0 ;for ( i = m ; i < n1 ; ++ i ) x2[i] = 0 ;DFT ( x1 , n1 , 0 ) ;DFT ( x2 , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x1[i] = ( LL ) x1[i] * x2[i] % mod ;DFT ( x1 , n1 , 1 ) ;LL vn = inv ( n1 ) ;for ( i = 0 ; i < sz ; ++ i ) F.push_back ( x1[i] * vn % mod ) ;
}void brute_deal ( vector < int > & F , vector < int > & F1 , vector < int > & F2 , int sz ) {int n = F1.size () , m = F2.size () , i , j ;for ( i = 0 ; i < sz ; ++ i ) x1[i] = 0 ;for ( i = 0 ; i < n ; ++ i ) {for ( j = 0 ; j < m ; ++ j ) {x1[i + j] = ( x1[i + j] + ( LL ) F1[i] * F2[j] ) % mod ;}}for ( i = 0 ; i < sz ; ++ i ) F.push_back ( x1[i] ) ;
}void build ( int o , int l , int r ) {if ( l == r ) {M[o].push_back ( ( mod - a[l] ) % mod ) ;M[o].push_back ( 1 ) ;F[o].push_back ( l ) ;F[o].push_back ( 1 ) ;return ;}int m = mid , n = r - l + 2 ;build ( lson ) ;build ( rson ) ;if ( n <= 1400 ) {brute_deal ( M[o] , M[ls] , M[rs] , n ) ;brute_deal ( F[o] , F[ls] , F[rs] , n ) ;return ;}deal ( M[o] , M[ls] , M[rs] , n ) ;deal ( F[o] , F[ls] , F[rs] , n ) ;
}void get ( int A[] , vector < int > & F , int n ) {for ( int i = 0 ; i < n ; ++ i ) A[i] = F[i] ;
}void go ( int o , int l , int r ) {int m = mid , i , j ;int n = r - l + 2 , nL = F[ls].size () , nR = F[rs].size () ;get ( A , F[o] , n ) ;if ( n <= 500 ) {for ( i = l ; i <= r ; ++ i ) {LL x = 0 , y = 1 ;for ( j = 0 ; j < n ; ++ j ) {x = ( x + A[j] * y ) % mod ;y = y * a[i] % mod ;}ans = ans * x % mod ;}return ;}get ( B , M[ls] , nL ) ;DIV ( A , B , R , n , nL ) ;for ( i = 0 ; i < nL ; ++ i ) F[ls][i] = R[i] ;F[ls][nL - 1] = 0 ;get ( B , M[rs] , nR ) ;DIV ( A , B , R , n , nR ) ;for ( i = 0 ; i < nR ; ++ i ) F[rs][i] = R[i] ;F[rs][nR - 1] = 0 ;go ( lson ) ;go ( rson ) ;
}void calc ( int n ) {Sqrt = sqrt ( 1.0 * n ) ;for ( int i = 0 ; i < Sqrt ; ++ i ) a[i + 1] = Sqrt * i % mod ;build ( root ) ;
//  printf ( "ok\n" ) ;go ( root ) ;for ( int i = Sqrt * Sqrt + 1 ; i <= n ; ++ i ) ans = ( LL ) ans * i % mod ;
}void solve () {scanf ( "%d%d" , &n , &mod ) ;if ( n >= mod ) {printf ( "0\n" ) ;return ;}ans = 1 ;preprocess ( mod - 1 ) ;calc ( n ) ;if ( n & 1 ) ans = ( LL ) ans * inv ( 2 ) % mod ;printf ( "%d\n" , ans ) ;
}int main () {solve () ;return 0 ;
}

这篇关于【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139175

相关文章

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

SpringCloud Stream 快速入门实例教程

《SpringCloudStream快速入门实例教程》本文介绍了SpringCloudStream(SCS)组件在分布式系统中的作用,以及如何集成到SpringBoot项目中,通过SCS,可... 目录1.SCS 组件的出现的背景和作用2.SCS 集成srping Boot项目3.Yml 配置4.Sprin

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

基于Python实现数字限制在指定范围内的五种方式

《基于Python实现数字限制在指定范围内的五种方式》在编程中,数字范围限制是常见需求,无论是游戏开发中的角色属性值、金融计算中的利率调整,还是传感器数据处理中的异常值过滤,都需要将数字控制在合理范围... 目录引言一、基础条件判断法二、数学运算巧解法三、装饰器模式法四、自定义类封装法五、NumPy数组处理