【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】

2024-09-05 14:08

本文主要是介绍【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【51nod】算法马拉松4 F 移数字

涉及知识点:多项式求逆,多项式除法,多点插值,阶乘取模。

对于N!%P,复杂度为 O(Nlog2N)
但常数巨大,和暴力算实际复杂度只相差常数= =
这个是可以扩展到组合数取模的~

my  code:

#include <stdio.h>
#include <string.h>
#include <map>
#include <math.h>
#include <vector>
#include <algorithm>
using namespace std ;typedef long long LL ;
typedef long long Int ;
#define clr( a , x ) memset ( a , x , sizeof a )
#define ls ( o << 1 )
#define rs ( o << 1 | 1 )
#define lson ls , l , m
#define rson rs , m + 1 , r
#define root 1 , 1 , Sqrt
#define mid ( ( l + r ) >> 1 )const int MAXN = 300005 ;vector < int > M[MAXN << 2] ;
vector < int > F[MAXN << 2] ;
int x1[MAXN] , x2[MAXN] , x3[MAXN] , tmp[MAXN] ;
int A[MAXN] , B[MAXN] , R[MAXN] ;
int a[MAXN] ;
int mod , g ;
int S[MAXN] , top ;
int n ;
int ans ;
int Sqrt ;int exgcd ( int a , int b , int& x , int& y ) {if ( b ) {exgcd ( b , a % b , y , x ) ;y -= a / b * x ;} else {x = 1 ;y = 0 ;}
}int inv ( int a ) {int x , y , b = mod ;exgcd ( a , b , x , y ) ;if ( x < 0 ) x += mod ;return x ;
}int powmod ( int a , int b ) {int res = 1 , tmp = a ;while ( b ) {if ( b & 1 ) res = ( LL ) res * tmp % mod ;tmp = ( LL ) tmp * tmp % mod ;b >>= 1 ;}return res ;
}void DFT ( int y[] , int n , int rev ) {for ( int i = 1 , j , k , t ; i < n ; ++ i ) {for ( j = 0 , k = n >> 1 , t = i ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;if ( i < j ) swap ( y[i] , y[j] ) ;}for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {int wn = powmod ( g , ( mod - 1 ) / s ) ;if ( rev ) wn = inv ( wn ) ;for ( int k = 0 ; k < n ; k += s ) {LL w = 1 , t ;for ( int i = k ; i < k + ds ; ++ i , w = w * wn % mod ) {y[i + ds] = ( y[i] - ( t = w * y[i + ds] % mod ) + mod ) % mod ;y[i] = ( y[i] + t ) % mod ;}}}
}void INV ( int A[] , int B[] , int n ) {B[0] = inv ( A[0] ) ;int i , n1 , t , vn , s , ds ;for ( s = 2 , ds = 1 ; ds < n ; ds = s , s <<= 1 ) {n1 = ( s << 1 ) , t = min ( s , n ) , vn = inv ( n1 ) ;for ( i = 0 ; i < t ; ++ i ) tmp[i] = A[i] ;for ( i = t ; i < n1 ; ++ i ) tmp[i] = 0 ;DFT ( tmp , n1 , 0 ) ;DFT ( B , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) B[i] = B[i] * ( 2 - ( LL ) tmp[i] * B[i] % mod + mod ) % mod ;DFT ( B , n1 , 1 ) ;for ( i = 0 ; i < t ; ++ i ) B[i] = ( LL ) B[i] * vn % mod ;for ( i = t ; i < n1 ; ++ i ) B[i] = 0 ;}
}void DIV ( int A[] , int B[] , int R[] , int n , int m ) {int n1 = 1 , n2 = n - m + 1 , i ;while ( n1 <= n * 2 ) n1 <<= 1 ;for ( i = 0 ; i < n ; ++ i ) x1[i] = A[n - i - 1] ;for ( i = 0 ; i < m ; ++ i ) x2[i] = B[m - i - 1] ;for ( i = m ; i < n2 ; ++ i ) x2[i] = 0 ;for ( i = n2 ; i < n1 ; ++ i ) x1[i] = x2[i] = 0 ;for ( i = 0 ; i < n1 ; ++ i ) x3[i] = 0 ;INV ( x2 , x3 , n2 ) ;DFT ( x1 , n1 , 0 ) ;DFT ( x3 , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x1[i] = ( LL ) x1[i] * x3[i] % mod ;DFT ( x1 , n1 , 1 ) ;int vn = inv ( n1 ) ;for ( i = 0 ; i < n2 ; ++ i ) x2[n2 - i - 1] = ( LL ) x1[i] * vn % mod ;for ( i = n2 ; i < n1 ; ++ i ) x2[i] = 0 ;for ( i = m ; i < n1 ; ++ i ) B[i] = 0 ;DFT ( x2 , n1 , 0 ) ;DFT ( B , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x2[i] = ( LL ) x2[i] * B[i] % mod ;DFT ( x2 , n1 , 1 ) ;for ( i = 0 ; i < m - 1 ; ++ i ) {R[i] = A[i] - ( LL ) x2[i] * vn % mod ;if ( R[i] < 0 ) R[i] += mod ;}
}void preprocess ( int n ) {top = 0 ;int i , flag ;for ( i = 2 ; i * i <= n ; ++ i ) {if ( n % i == 0 ) {S[top ++] = i ;while ( n % i == 0 ) n /= i ;}}if ( n > 1 ) S[top ++] = n ;for ( g = 1 ; ; ++ g ) {flag = 1 ;for ( i = 0 ; i < top ; ++ i ) {if ( powmod ( g , ( mod - 1 ) / S[i] ) == 1 ) {flag = 0 ;break ;}}if ( flag ) return ;}
}void deal ( vector < int > & F , vector < int > & F1 , vector < int > & F2 , int sz ) {int n = F1.size () , m = F2.size () , n1 = 1 , i ;while ( n1 < n + m ) n1 <<= 1 ;for ( i = 0 ; i < n ; ++ i ) x1[i] = F1[i] ;for ( i = 0 ; i < m ; ++ i ) x2[i] = F2[i] ;for ( i = n ; i < n1 ; ++ i ) x1[i] = 0 ;for ( i = m ; i < n1 ; ++ i ) x2[i] = 0 ;DFT ( x1 , n1 , 0 ) ;DFT ( x2 , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x1[i] = ( LL ) x1[i] * x2[i] % mod ;DFT ( x1 , n1 , 1 ) ;LL vn = inv ( n1 ) ;for ( i = 0 ; i < sz ; ++ i ) F.push_back ( x1[i] * vn % mod ) ;
}void brute_deal ( vector < int > & F , vector < int > & F1 , vector < int > & F2 , int sz ) {int n = F1.size () , m = F2.size () , i , j ;for ( i = 0 ; i < sz ; ++ i ) x1[i] = 0 ;for ( i = 0 ; i < n ; ++ i ) {for ( j = 0 ; j < m ; ++ j ) {x1[i + j] = ( x1[i + j] + ( LL ) F1[i] * F2[j] ) % mod ;}}for ( i = 0 ; i < sz ; ++ i ) F.push_back ( x1[i] ) ;
}void build ( int o , int l , int r ) {if ( l == r ) {M[o].push_back ( ( mod - a[l] ) % mod ) ;M[o].push_back ( 1 ) ;F[o].push_back ( l ) ;F[o].push_back ( 1 ) ;return ;}int m = mid , n = r - l + 2 ;build ( lson ) ;build ( rson ) ;if ( n <= 1400 ) {brute_deal ( M[o] , M[ls] , M[rs] , n ) ;brute_deal ( F[o] , F[ls] , F[rs] , n ) ;return ;}deal ( M[o] , M[ls] , M[rs] , n ) ;deal ( F[o] , F[ls] , F[rs] , n ) ;
}void get ( int A[] , vector < int > & F , int n ) {for ( int i = 0 ; i < n ; ++ i ) A[i] = F[i] ;
}void go ( int o , int l , int r ) {int m = mid , i , j ;int n = r - l + 2 , nL = F[ls].size () , nR = F[rs].size () ;get ( A , F[o] , n ) ;if ( n <= 500 ) {for ( i = l ; i <= r ; ++ i ) {LL x = 0 , y = 1 ;for ( j = 0 ; j < n ; ++ j ) {x = ( x + A[j] * y ) % mod ;y = y * a[i] % mod ;}ans = ans * x % mod ;}return ;}get ( B , M[ls] , nL ) ;DIV ( A , B , R , n , nL ) ;for ( i = 0 ; i < nL ; ++ i ) F[ls][i] = R[i] ;F[ls][nL - 1] = 0 ;get ( B , M[rs] , nR ) ;DIV ( A , B , R , n , nR ) ;for ( i = 0 ; i < nR ; ++ i ) F[rs][i] = R[i] ;F[rs][nR - 1] = 0 ;go ( lson ) ;go ( rson ) ;
}void calc ( int n ) {Sqrt = sqrt ( 1.0 * n ) ;for ( int i = 0 ; i < Sqrt ; ++ i ) a[i + 1] = Sqrt * i % mod ;build ( root ) ;
//  printf ( "ok\n" ) ;go ( root ) ;for ( int i = Sqrt * Sqrt + 1 ; i <= n ; ++ i ) ans = ( LL ) ans * i % mod ;
}void solve () {scanf ( "%d%d" , &n , &mod ) ;if ( n >= mod ) {printf ( "0\n" ) ;return ;}ans = 1 ;preprocess ( mod - 1 ) ;calc ( n ) ;if ( n & 1 ) ans = ( LL ) ans * inv ( 2 ) % mod ;printf ( "%d\n" , ans ) ;
}int main () {solve () ;return 0 ;
}

这篇关于【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139175

相关文章

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

java字符串数字补齐位数详解

《java字符串数字补齐位数详解》:本文主要介绍java字符串数字补齐位数,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java字符串数字补齐位数一、使用String.format()方法二、Apache Commons Lang库方法三、Java 11+的St