【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】

2024-09-05 14:08

本文主要是介绍【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【51nod】算法马拉松4 F 移数字

涉及知识点:多项式求逆,多项式除法,多点插值,阶乘取模。

对于N!%P,复杂度为 O(Nlog2N)
但常数巨大,和暴力算实际复杂度只相差常数= =
这个是可以扩展到组合数取模的~

my  code:

#include <stdio.h>
#include <string.h>
#include <map>
#include <math.h>
#include <vector>
#include <algorithm>
using namespace std ;typedef long long LL ;
typedef long long Int ;
#define clr( a , x ) memset ( a , x , sizeof a )
#define ls ( o << 1 )
#define rs ( o << 1 | 1 )
#define lson ls , l , m
#define rson rs , m + 1 , r
#define root 1 , 1 , Sqrt
#define mid ( ( l + r ) >> 1 )const int MAXN = 300005 ;vector < int > M[MAXN << 2] ;
vector < int > F[MAXN << 2] ;
int x1[MAXN] , x2[MAXN] , x3[MAXN] , tmp[MAXN] ;
int A[MAXN] , B[MAXN] , R[MAXN] ;
int a[MAXN] ;
int mod , g ;
int S[MAXN] , top ;
int n ;
int ans ;
int Sqrt ;int exgcd ( int a , int b , int& x , int& y ) {if ( b ) {exgcd ( b , a % b , y , x ) ;y -= a / b * x ;} else {x = 1 ;y = 0 ;}
}int inv ( int a ) {int x , y , b = mod ;exgcd ( a , b , x , y ) ;if ( x < 0 ) x += mod ;return x ;
}int powmod ( int a , int b ) {int res = 1 , tmp = a ;while ( b ) {if ( b & 1 ) res = ( LL ) res * tmp % mod ;tmp = ( LL ) tmp * tmp % mod ;b >>= 1 ;}return res ;
}void DFT ( int y[] , int n , int rev ) {for ( int i = 1 , j , k , t ; i < n ; ++ i ) {for ( j = 0 , k = n >> 1 , t = i ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;if ( i < j ) swap ( y[i] , y[j] ) ;}for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {int wn = powmod ( g , ( mod - 1 ) / s ) ;if ( rev ) wn = inv ( wn ) ;for ( int k = 0 ; k < n ; k += s ) {LL w = 1 , t ;for ( int i = k ; i < k + ds ; ++ i , w = w * wn % mod ) {y[i + ds] = ( y[i] - ( t = w * y[i + ds] % mod ) + mod ) % mod ;y[i] = ( y[i] + t ) % mod ;}}}
}void INV ( int A[] , int B[] , int n ) {B[0] = inv ( A[0] ) ;int i , n1 , t , vn , s , ds ;for ( s = 2 , ds = 1 ; ds < n ; ds = s , s <<= 1 ) {n1 = ( s << 1 ) , t = min ( s , n ) , vn = inv ( n1 ) ;for ( i = 0 ; i < t ; ++ i ) tmp[i] = A[i] ;for ( i = t ; i < n1 ; ++ i ) tmp[i] = 0 ;DFT ( tmp , n1 , 0 ) ;DFT ( B , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) B[i] = B[i] * ( 2 - ( LL ) tmp[i] * B[i] % mod + mod ) % mod ;DFT ( B , n1 , 1 ) ;for ( i = 0 ; i < t ; ++ i ) B[i] = ( LL ) B[i] * vn % mod ;for ( i = t ; i < n1 ; ++ i ) B[i] = 0 ;}
}void DIV ( int A[] , int B[] , int R[] , int n , int m ) {int n1 = 1 , n2 = n - m + 1 , i ;while ( n1 <= n * 2 ) n1 <<= 1 ;for ( i = 0 ; i < n ; ++ i ) x1[i] = A[n - i - 1] ;for ( i = 0 ; i < m ; ++ i ) x2[i] = B[m - i - 1] ;for ( i = m ; i < n2 ; ++ i ) x2[i] = 0 ;for ( i = n2 ; i < n1 ; ++ i ) x1[i] = x2[i] = 0 ;for ( i = 0 ; i < n1 ; ++ i ) x3[i] = 0 ;INV ( x2 , x3 , n2 ) ;DFT ( x1 , n1 , 0 ) ;DFT ( x3 , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x1[i] = ( LL ) x1[i] * x3[i] % mod ;DFT ( x1 , n1 , 1 ) ;int vn = inv ( n1 ) ;for ( i = 0 ; i < n2 ; ++ i ) x2[n2 - i - 1] = ( LL ) x1[i] * vn % mod ;for ( i = n2 ; i < n1 ; ++ i ) x2[i] = 0 ;for ( i = m ; i < n1 ; ++ i ) B[i] = 0 ;DFT ( x2 , n1 , 0 ) ;DFT ( B , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x2[i] = ( LL ) x2[i] * B[i] % mod ;DFT ( x2 , n1 , 1 ) ;for ( i = 0 ; i < m - 1 ; ++ i ) {R[i] = A[i] - ( LL ) x2[i] * vn % mod ;if ( R[i] < 0 ) R[i] += mod ;}
}void preprocess ( int n ) {top = 0 ;int i , flag ;for ( i = 2 ; i * i <= n ; ++ i ) {if ( n % i == 0 ) {S[top ++] = i ;while ( n % i == 0 ) n /= i ;}}if ( n > 1 ) S[top ++] = n ;for ( g = 1 ; ; ++ g ) {flag = 1 ;for ( i = 0 ; i < top ; ++ i ) {if ( powmod ( g , ( mod - 1 ) / S[i] ) == 1 ) {flag = 0 ;break ;}}if ( flag ) return ;}
}void deal ( vector < int > & F , vector < int > & F1 , vector < int > & F2 , int sz ) {int n = F1.size () , m = F2.size () , n1 = 1 , i ;while ( n1 < n + m ) n1 <<= 1 ;for ( i = 0 ; i < n ; ++ i ) x1[i] = F1[i] ;for ( i = 0 ; i < m ; ++ i ) x2[i] = F2[i] ;for ( i = n ; i < n1 ; ++ i ) x1[i] = 0 ;for ( i = m ; i < n1 ; ++ i ) x2[i] = 0 ;DFT ( x1 , n1 , 0 ) ;DFT ( x2 , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x1[i] = ( LL ) x1[i] * x2[i] % mod ;DFT ( x1 , n1 , 1 ) ;LL vn = inv ( n1 ) ;for ( i = 0 ; i < sz ; ++ i ) F.push_back ( x1[i] * vn % mod ) ;
}void brute_deal ( vector < int > & F , vector < int > & F1 , vector < int > & F2 , int sz ) {int n = F1.size () , m = F2.size () , i , j ;for ( i = 0 ; i < sz ; ++ i ) x1[i] = 0 ;for ( i = 0 ; i < n ; ++ i ) {for ( j = 0 ; j < m ; ++ j ) {x1[i + j] = ( x1[i + j] + ( LL ) F1[i] * F2[j] ) % mod ;}}for ( i = 0 ; i < sz ; ++ i ) F.push_back ( x1[i] ) ;
}void build ( int o , int l , int r ) {if ( l == r ) {M[o].push_back ( ( mod - a[l] ) % mod ) ;M[o].push_back ( 1 ) ;F[o].push_back ( l ) ;F[o].push_back ( 1 ) ;return ;}int m = mid , n = r - l + 2 ;build ( lson ) ;build ( rson ) ;if ( n <= 1400 ) {brute_deal ( M[o] , M[ls] , M[rs] , n ) ;brute_deal ( F[o] , F[ls] , F[rs] , n ) ;return ;}deal ( M[o] , M[ls] , M[rs] , n ) ;deal ( F[o] , F[ls] , F[rs] , n ) ;
}void get ( int A[] , vector < int > & F , int n ) {for ( int i = 0 ; i < n ; ++ i ) A[i] = F[i] ;
}void go ( int o , int l , int r ) {int m = mid , i , j ;int n = r - l + 2 , nL = F[ls].size () , nR = F[rs].size () ;get ( A , F[o] , n ) ;if ( n <= 500 ) {for ( i = l ; i <= r ; ++ i ) {LL x = 0 , y = 1 ;for ( j = 0 ; j < n ; ++ j ) {x = ( x + A[j] * y ) % mod ;y = y * a[i] % mod ;}ans = ans * x % mod ;}return ;}get ( B , M[ls] , nL ) ;DIV ( A , B , R , n , nL ) ;for ( i = 0 ; i < nL ; ++ i ) F[ls][i] = R[i] ;F[ls][nL - 1] = 0 ;get ( B , M[rs] , nR ) ;DIV ( A , B , R , n , nR ) ;for ( i = 0 ; i < nR ; ++ i ) F[rs][i] = R[i] ;F[rs][nR - 1] = 0 ;go ( lson ) ;go ( rson ) ;
}void calc ( int n ) {Sqrt = sqrt ( 1.0 * n ) ;for ( int i = 0 ; i < Sqrt ; ++ i ) a[i + 1] = Sqrt * i % mod ;build ( root ) ;
//  printf ( "ok\n" ) ;go ( root ) ;for ( int i = Sqrt * Sqrt + 1 ; i <= n ; ++ i ) ans = ( LL ) ans * i % mod ;
}void solve () {scanf ( "%d%d" , &n , &mod ) ;if ( n >= mod ) {printf ( "0\n" ) ;return ;}ans = 1 ;preprocess ( mod - 1 ) ;calc ( n ) ;if ( n & 1 ) ans = ( LL ) ans * inv ( 2 ) % mod ;printf ( "%d\n" , ans ) ;
}int main () {solve () ;return 0 ;
}

这篇关于【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139175

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

java字符串数字补齐位数详解

《java字符串数字补齐位数详解》:本文主要介绍java字符串数字补齐位数,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java字符串数字补齐位数一、使用String.format()方法二、Apache Commons Lang库方法三、Java 11+的St

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并