模型从 HuggingFace 转存到 ModelScope

2024-09-05 07:52

本文主要是介绍模型从 HuggingFace 转存到 ModelScope,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由于 HuggingFace 网络访问比较慢,国内通常会使用魔搭下载模型,如果魔搭上还没有,需要从 HuggingFace 准存一下,本文将通过 Colab + AliyunPan 的方式下载模型并进行转存。

登录Colab 并运行一下命令

安装依赖包,Huggingface 和云盘

# 安装需要的包
!pip install huggingface_hub aligo

下载模型

import huggingface_hub as hhrepo_id = "TencentBAC/Conan-embedding-v1"
revision_list = hh.list_repo_refs(repo_id)
ref = revision_list.branches[0].ref
hh.snapshot_download(repo_id=repo_id, revision=ref, local_dir="./download")

登录阿里云盘

# 上传阿里云盘,填上token
from aligo import Aligo
ali = Aligo()# 获取用户信息和获取网盘根目录文件列表
user = ali.get_user()
print(user.user_name, user.nick_name, user.phone)
ll = ali.get_file_list() 

上传目录

outpath="/content/download"
remote_folder = ali.get_folder_by_path("model100", create_folder=True)
ali.upload_folder(outpath, remote_folder.file_id)

文件成功上传
在这里插入图片描述

上传 ModelScope

在 ModelScope 上启动 Notebook
在这里插入图片描述
进入 Notebook 安装依赖

!pip install aligo

登录云盘,会出现二维码,扫码登录

from aligo import Aligo
ali = Aligo()

下载模型,设置云盘的目录位置,指定目标路径并下载

file = ali.get_folder_by_path('model100/download')ali.download_folder(folder_file_id=file.file_id, local_folder="/tmp")

上传到魔搭,替换为自己的 Token,设置模型 Id 为自己创建的模型的 Id,甚至本地路径。
在这里插入图片描述

from modelscope.hub.api import HubApi
local_dir = "/tmp/download"
'''
魔搭需要一个配置文件,否则上传失败,这里创建一个空文件
'''
!touch {local_dir+"/configuration.json"}
YOUR_ACCESS_TOKEN = '9ec19501-230a-4749-9909-b093e5466e74'
api = HubApi()
api.login(YOUR_ACCESS_TOKEN)
api.push_model(model_id="model1001/Conan",model_dir=local_dir
)

修改配置文件内容,model 的配置信息直接从 HuggingFace config.json 文件中拷贝即可。

{"framework": "pytorch","task": "sentence-embedding","model": {"architectures": ["BertModel"],"attention_probs_dropout_prob": 0.1,"classifier_dropout": null,"directionality": "bidi","gradient_checkpointing": false,"hidden_act": "gelu","hidden_dropout_prob": 0.1,"hidden_size": 1024,"initializer_range": 0.02,"intermediate_size": 4096,"layer_norm_eps": 1e-12,"max_position_embeddings": 512,"model_type": "bert","num_attention_heads": 16,"num_hidden_layers": 24,"pad_token_id": 0,"pooler_fc_size": 768,"pooler_num_attention_heads": 12,"pooler_num_fc_layers": 3,"pooler_size_per_head": 128,"pooler_type": "first_token_transform","position_embedding_type": "absolute","torch_dtype": "float32","transformers_version": "4.36.2","type_vocab_size": 2,"use_cache": true,"vocab_size": 21128},"pipeline": {"type": "sentence-embedding"}
}

上传成功后,会进入审核进度,审核很快可以完成。
在这里插入图片描述
测试上传的模型

from modelscope.models import Model
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasksmodel_id = "model1001/Conan"
pipeline_se = pipeline(Tasks.sentence_embedding,model=model_id,sequence_length=512) # 当输入包含“soure_sentence”与“sentences_to_compare”时,会输出source_sentence中首个句子与sentences_to_compare中每个句子的向量表示,以及source_sentence中首个句子与sentences_to_compare中每个句子的相似度。
inputs = {"source_sentence": ["吃完海鲜可以喝牛奶吗?"],"sentences_to_compare": ["不可以,早晨喝牛奶不科学","吃了海鲜后是不能再喝牛奶的,因为牛奶中含得有维生素C,如果海鲜喝牛奶一起服用会对人体造成一定的伤害","吃海鲜是不能同时喝牛奶吃水果,这个至少间隔6小时以上才可以。","吃海鲜是不可以吃柠檬的因为其中的维生素C会和海鲜中的矿物质形成砷"]}result = pipeline_se(input=inputs)
print (result)

总结

HuggingFace 模型转到 ModelScope 基本上就是直接的文件拷贝,上传前需要将模型配置稍微调整一下。

这篇关于模型从 HuggingFace 转存到 ModelScope的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138374

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G