最强MoE完全开源模型发布啦~

2024-09-05 07:04

本文主要是介绍最强MoE完全开源模型发布啦~,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

366c3524ce604dd00c5a2a704090bb4f.png

这篇文章介绍了OLMOE(Open Mixture-of-Experts Language Models)系列模型,这是一款开源的稀疏混合专家模型。OLMOE-1B-7B拥有70亿参数,但每个输入令牌仅使用10亿参数。该模型在5万亿令牌上进行预训练,并进一步适应以创建OLMOE-1B-7B-INSTRUCT。这些模型在相似活跃参数的模型中表现最佳,甚至超越了更大的模型,如Llama2-13B-Chat和DeepSeekMoE-16B。文章还展示了在MoE训练上的各种实验,分析了模型中的路由,显示了高度专业化,并开源了工作的所有方面:模型权重、训练数据、代码和日志。

论文:OLMoE: Open Mixture-of-Experts Language Models

地址:https://arxiv.org/pdf/2409.02060

一、研究背景

  1. 提出OLMoE:一种完全开放且最先进的语言模型,利用稀疏的MoE(Mixture-of-Experts)。OLMOE-1B-7B模型在相似活跃参数数量的情况下,表现优于所有可用的模型,甚至超过了更大的模型如Llama2-13B-Chat和DeepSeekMoE-16B。

  2. 研究难点:MoE模型需要在每层有多个专家,但每次只激活其中的一部分,这使得MoE在训练和推理效率上显著优于密集模型。然而,现有的MoE模型大多是闭源的,缺乏训练数据、代码和训练方法的开放资源,这限制了研究的进展和开源MoE模型的发展。

  3. 相关工作:之前的研究表明,MoE模型在计算效率和参数数量上有显著优势,但大多数MoE模型仍然是闭源的。已有的开源MoE模型如OpenMoE的性能有限,无法与闭源的前沿模型相媲美。

40ee858f3e4a13d83cd871f76073b98c.png

二、研究方法

这篇论文提出了OLMOE模型用于解决MoE模型在开放性和性能上的不足。具体来说:

  1. 模型架构:OLMOE是一个解码器only的LM,由NL transformer层组成。密集模型中的前馈网络(FFN)被MoE模块替代,MoE模块由多个较小的FFN模块(称为专家)组成,每个输入标记只激活其中的一个子集。a37d391940837fa9a31a7001233d067a.png

  2. 关键设计决策

  • 专家粒度:使用64个小专家,每层激活8个。

  • 路由算法:采用无dropout的标记选择路由。

  • 辅助损失:使用负载平衡损失(LLB)和路由器z损失(LRZ)来优化模型的训练。

  • 数据集:使用DCLM和Dolma 1.7的数据集进行预训练,数据集包括Common Crawl、StarCoder、arXiv等。

训练过程:OLMOE-1B-7B从头开始训练,总共训练5.133T标记。在训练的退火阶段,先重新打乱整个数据集,然后线性衰减学习率至0。

三、实验设计

  1. 数据收集:预训练数据来自DCLM和Dolma 1.7,包括Common Crawl、StarCoder、arXiv等高质量数据集。适应训练数据包括Tulu 2 SFT Mix、Various、CodeFeedback-Filtered-Instruction等。

  2. 实验设置:在预训练过程中,使用多种下游任务进行评估,包括MMLU、ARC-C、BoolQ等。适应训练过程中,使用指令调优(SFT)和偏好调优(DPO)来提升模型性能。

  3. 参数配置:使用AdamW优化器,混合精度训练,初始化为截断正态分布,学习率设置为5.0E-4,训练5T标记。适应训练过程中,SFT使用BF16全局批量大小为128,DPO使用RMSProp优化器,批量大小为32。

四、结果与分析

  1. 预训练结果:在预训练过程中,OLMOE-1B-7B在所有任务上的表现均优于现有的OLMo模型,且计算成本更低。d7d26c406e52b0332a50193a1a583998.png

  2. 适应训练结果:适应训练后,OLMOE-1B-7B在指令调优和偏好调优任务上表现优异,平均得分最高。

五、总体结论

本文提出的OLMOE模型在性能和开放性上均达到了新的高度,成为第一个完全开放且最先进的MoE语言模型。通过开源OLMOE-1B-7B及其相关资源,本文旨在推动MoE模型的研究和发展,帮助研究者更好地理解和改进这些模型。未来的工作将包括增加参数数量、训练数据量、探索多模态和跨语言应用。

AI辅助人工完成。


备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

2fc32747390d19c675fa18be95907669.png

id:DLNLPer,记得备注呦

这篇关于最强MoE完全开源模型发布啦~的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138272

相关文章

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

售价599元起! 华为路由器X1/Pro发布 配置与区别一览

《售价599元起!华为路由器X1/Pro发布配置与区别一览》华为路由器X1/Pro发布,有朋友留言问华为路由X1和X1Pro怎么选择,关于这个问题,本期图文将对这二款路由器做了期参数对比,大家看... 华为路由 X1 系列已经正式发布并开启预售,将在 4 月 25 日 10:08 正式开售,两款产品分别为华

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

新特性抢先看! Ubuntu 25.04 Beta 发布:Linux 6.14 内核

《新特性抢先看!Ubuntu25.04Beta发布:Linux6.14内核》Canonical公司近日发布了Ubuntu25.04Beta版,这一版本被赋予了一个活泼的代号——“Plu... Canonical 昨日(3 月 27 日)放出了 Beta 版 Ubuntu 25.04 系统镜像,代号“Pluc

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间