最强MoE完全开源模型发布啦~

2024-09-05 07:04

本文主要是介绍最强MoE完全开源模型发布啦~,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

366c3524ce604dd00c5a2a704090bb4f.png

这篇文章介绍了OLMOE(Open Mixture-of-Experts Language Models)系列模型,这是一款开源的稀疏混合专家模型。OLMOE-1B-7B拥有70亿参数,但每个输入令牌仅使用10亿参数。该模型在5万亿令牌上进行预训练,并进一步适应以创建OLMOE-1B-7B-INSTRUCT。这些模型在相似活跃参数的模型中表现最佳,甚至超越了更大的模型,如Llama2-13B-Chat和DeepSeekMoE-16B。文章还展示了在MoE训练上的各种实验,分析了模型中的路由,显示了高度专业化,并开源了工作的所有方面:模型权重、训练数据、代码和日志。

论文:OLMoE: Open Mixture-of-Experts Language Models

地址:https://arxiv.org/pdf/2409.02060

一、研究背景

  1. 提出OLMoE:一种完全开放且最先进的语言模型,利用稀疏的MoE(Mixture-of-Experts)。OLMOE-1B-7B模型在相似活跃参数数量的情况下,表现优于所有可用的模型,甚至超过了更大的模型如Llama2-13B-Chat和DeepSeekMoE-16B。

  2. 研究难点:MoE模型需要在每层有多个专家,但每次只激活其中的一部分,这使得MoE在训练和推理效率上显著优于密集模型。然而,现有的MoE模型大多是闭源的,缺乏训练数据、代码和训练方法的开放资源,这限制了研究的进展和开源MoE模型的发展。

  3. 相关工作:之前的研究表明,MoE模型在计算效率和参数数量上有显著优势,但大多数MoE模型仍然是闭源的。已有的开源MoE模型如OpenMoE的性能有限,无法与闭源的前沿模型相媲美。

40ee858f3e4a13d83cd871f76073b98c.png

二、研究方法

这篇论文提出了OLMOE模型用于解决MoE模型在开放性和性能上的不足。具体来说:

  1. 模型架构:OLMOE是一个解码器only的LM,由NL transformer层组成。密集模型中的前馈网络(FFN)被MoE模块替代,MoE模块由多个较小的FFN模块(称为专家)组成,每个输入标记只激活其中的一个子集。a37d391940837fa9a31a7001233d067a.png

  2. 关键设计决策

  • 专家粒度:使用64个小专家,每层激活8个。

  • 路由算法:采用无dropout的标记选择路由。

  • 辅助损失:使用负载平衡损失(LLB)和路由器z损失(LRZ)来优化模型的训练。

  • 数据集:使用DCLM和Dolma 1.7的数据集进行预训练,数据集包括Common Crawl、StarCoder、arXiv等。

训练过程:OLMOE-1B-7B从头开始训练,总共训练5.133T标记。在训练的退火阶段,先重新打乱整个数据集,然后线性衰减学习率至0。

三、实验设计

  1. 数据收集:预训练数据来自DCLM和Dolma 1.7,包括Common Crawl、StarCoder、arXiv等高质量数据集。适应训练数据包括Tulu 2 SFT Mix、Various、CodeFeedback-Filtered-Instruction等。

  2. 实验设置:在预训练过程中,使用多种下游任务进行评估,包括MMLU、ARC-C、BoolQ等。适应训练过程中,使用指令调优(SFT)和偏好调优(DPO)来提升模型性能。

  3. 参数配置:使用AdamW优化器,混合精度训练,初始化为截断正态分布,学习率设置为5.0E-4,训练5T标记。适应训练过程中,SFT使用BF16全局批量大小为128,DPO使用RMSProp优化器,批量大小为32。

四、结果与分析

  1. 预训练结果:在预训练过程中,OLMOE-1B-7B在所有任务上的表现均优于现有的OLMo模型,且计算成本更低。d7d26c406e52b0332a50193a1a583998.png

  2. 适应训练结果:适应训练后,OLMOE-1B-7B在指令调优和偏好调优任务上表现优异,平均得分最高。

五、总体结论

本文提出的OLMOE模型在性能和开放性上均达到了新的高度,成为第一个完全开放且最先进的MoE语言模型。通过开源OLMOE-1B-7B及其相关资源,本文旨在推动MoE模型的研究和发展,帮助研究者更好地理解和改进这些模型。未来的工作将包括增加参数数量、训练数据量、探索多模态和跨语言应用。

AI辅助人工完成。


备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

2fc32747390d19c675fa18be95907669.png

id:DLNLPer,记得备注呦

这篇关于最强MoE完全开源模型发布啦~的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138272

相关文章

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面