TCP拥塞控制算法BBR源码分析

2024-09-05 05:32

本文主要是介绍TCP拥塞控制算法BBR源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  BBR是谷歌与2016年提出的TCP拥塞控制算法,在Linux4.9的patch中正式加入。该算法一出,瞬间引起了极大的轰动。在CSDN上也有众多大佬对此进行分析讨论,褒贬不一。

  本文首先对源码进行了分析,并在此基础上对BBR算法进行总结。

1.源码分析
/* Bottleneck Bandwidth and RTT (BBR) congestion control** BBR congestion control computes the sending rate based on the delivery* rate (throughput) estimated from ACKs. In a nutshell:**   On each ACK, update our model of the network path:*      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)*      min_rtt = windowed_min(rtt, 10 seconds)*   pacing_rate = pacing_gain * bottleneck_bandwidth*   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)** pacing_rate和cwnd是整个算法最关键的核心所在,他们随着状态的变化而改变,并以此在实际上控制TCP的发包** The core algorithm does not react directly to packet losses or delays,* although BBR may adjust the size of next send per ACK when loss is* observed, or adjust the sending rate if it estimates there is a* traffic policer, in order to keep the drop rate reasonable.** Here is a state transition diagram for BBR:**             |*             V*    +---> STARTUP  ----+*    |        |         |*    |        V         |*    |      DRAIN   ----+*    |        |         |*    |        V         |*    +---> PROBE_BW ----+*    |      ^    |      |*    |      |    |      |*    |      +----+      |*    |                  |*    +---- PROBE_RTT <--+** A BBR flow starts in STARTUP, and ramps up its sending rate quickly.* When it estimates the pipe is full, it enters DRAIN to drain the queue.* In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.* A long-lived BBR flow spends the vast majority of its time remaining* (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth* in a fair manner, with a small, bounded queue. *If* a flow has been* continuously sending for the entire min_rtt window, and hasn't seen an RTT* sample that matches or decreases its min_rtt estimate for 10 seconds, then* it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe* the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if* we estimated that we reached the full bw of the pipe then we enter PROBE_BW;* otherwise we enter STARTUP to try to fill the pipe.** BBR is described in detail in:*   "BBR: Congestion-Based Congestion Control",*   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,*   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.** There is a public e-mail list for discussing BBR development and testing:*   https://groups.google.com/forum/#!forum/bbr-dev** NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,* otherwise TCP stack falls back to an internal pacing using one high* resolution timer per TCP socket and may use more resources.** Without fq qdisc, there may be some problem about RTT fair when lots of BBR* flows share a network but with different RTT.* Long RTT may hold more throughput than little one.* 详情可参考相关论文介绍:BBQ算法**/
#include <linux/module.h>
#include <net/tcp.h>
#include <linux/inet_diag.h>
#include <linux/inet.h>
#include <linux/random.h>
#include <linux/win_minmax.h>/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth* estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.* This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.* Since the minimum window is >=4 packets, the lower bound isn't* an issue. The upper bound isn't an issue with existing technologies.*/
#define BW_SCALE 24
#define BW_UNIT (1 << BW_SCALE)/*个人推测这里的BBR单位意思是使用kb作为单位,不知道理解的是否正确*/
#define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
#define BBR_UNIT (1 << BBR_SCALE)/* BBR has the following modes for deciding how fast to send:* BBR四种标准状态*/
enum bbr_mode {BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */BBR_DRAIN,	/* drain any queue created during startup */BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */BBR_PROBE_RTT,	/* cut inflight to min to probe min_rtt */
};/* BBR congestion control block */
struct bbr {u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */u32     next_rtt_delivered; /* scb->tx.delivered at end of round */u64	cycle_mstamp;	     /* time of this cycle phase start */u32     mode:3,		     /* current bbr_mode in state machine */prev_ca_state:3,     /* CA state on previous ACK */packet_conservation:1,  /* use packet conservation? */restore_cwnd:1,	     /* decided to revert cwnd to old value */round_start:1,	     /* start of packet-timed tx->ack round? */tso_segs_goal:7,     /* segments we want in each skb we send */idle_restart:1,	     /* restarting after idle? */probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */unused:5,lt_is_sampling:1,    /* taking long-term ("LT") samples now? */lt_rtt_cnt:7,	     /* round trips in long-term interval */lt_use_bw:1;	     /* use lt_bw as our bw estimate? */u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */u32	lt_last_delivered;   /* LT intvl start: tp->delivered */u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */u32	lt_last_lost;	     /* LT intvl start: tp->lost */u32	pacing_gain:10,	/* current gain for setting pacing rate */cwnd_gain:10,	/* current gain for setting cwnd */full_bw_reached:1,   /* reached full bw in Startup? */full_bw_cnt:2,	/* number of rounds without large bw gains */cycle_idx:3,	/* current index in pacing_gain cycle array */has_seen_rtt:1, /* have we seen an RTT sample yet? */unused_b:5;u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */u32	full_bw;	/* recent bw, to estimate if pipe is full */
};#define CYCLE_LEN	8	/* number of phases in a pacing gain cycle *//* Window length of bw filter (in rounds): */
static const int bbr_bw_rtts = CYCLE_LEN + 2;/* 10s未更新最小RTT则进入PROBE_RTT* Window length of min_rtt filter (in sec): */
static const u32 bbr_min_rtt_win_sec = 10;/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
static const u32 bbr_probe_rtt_mode_ms = 200;
/* Skip TSO below the following bandwidth (bits/sec): */
static const int bbr_min_tso_rate = 1200000;/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain* that will allow a smoothly increasing pacing rate that will double each RTT* and send the same number of packets per RTT that an un-paced, slow-starting* Reno or CUBIC flow would:** 模拟cubic的增加曲线做出的增长系数,这里类似于慢增长算法*/
static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain* the queue created in BBR_STARTUP in a single round:*/
static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
static const int bbr_cwnd_gain  = BBR_UNIT * 2;
/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
/* 第一个RTT时间多发送四分之一,第二次少发送四分之一以排空队列,之后以估计窗口值发送6次,作为一整个循环*/
static const int bbr_pacing_gain[] = {BBR_UNIT * 5 / 4,	/* probe for more available bw */BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
};
/* Randomize the starting gain cycling phase over N phases: */
static const u32 bbr_cycle_rand = 7;/* Try to keep at least this many packets in flight, if things go smoothly. For* smooth functioning, a sliding window protocol ACKing every other packet* needs at least 4 packets in flight:** 至少4个而不是1个是因为考虑到以下因素* (1)可能会有ACK延迟累积发送机制存在* (2)往返各2各则一共至少4个*/
static const u32 bbr_cwnd_min_target = 4;/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
/* If bw has increased significantly (1.25x), there may be more bw available: */
static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
static const u32 bbr_full_bw_cnt = 3;/* "long-term" ("LT") bandwidth estimator parameters... */
/* The minimum number of rounds in an LT bw sampling interval: */
static const u32 bbr_lt_intvl_min_rtts = 4;
/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: * 论文中丢包率大于20%会有暴跌,就是这里带来的*/
static const u32 bbr_lt_loss_thresh = 50;
/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
static const u32 bbr_lt_bw_diff = 4000 / 8;
/* If we estimate we're policed, use lt_bw for this many round trips: */
static const u32 bbr_lt_bw_max_rtts = 48;/* Do we estimate that STARTUP filled the pipe?检测STARTUP是否结束 */
static bool bbr_full_bw_reached(const struct sock *sk)
{const struct bbr *bbr = inet_csk_ca(sk);return bbr->full_bw_reached;
}/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. 最大探测带宽*/
static u32 bbr_max_bw(const struct sock *sk)
{struct bbr *bbr = inet_csk_ca(sk);return minmax_get(&bbr->bw);
}/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. 设置估计带宽为LT_bw或者最大探测带宽*/
static u32 bbr_bw(const struct sock *sk)
{struct bbr *bbr = inet_csk_ca(sk);return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
}/* Return rate in bytes per second, optionally with a gain.* The order here is chosen carefully to avoid overflow of u64. This should* work for input rates of up to 2.9Tbit/sec and gain of 2.89x.*/
static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
{rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);rate *= gain;rate >>= BBR_SCALE;rate *= USEC_PER_SEC;return rate >> BW_SCALE;
}/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
{u64 rate = bw;rate = bbr_rate_bytes_per_sec(sk, rate, gain);rate = min_t(u64, rate, sk->sk_max_pacing_rate);return rate;
}/* 初始化pacing rate* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);u64 bw;u32 rtt_us;if (tp->srtt_us) {		/* any RTT sample yet? */rtt_us = max(tp->srtt_us >> 3, 1U);bbr->has_seen_rtt = 1;} else {			 /* no RTT sample yet */rtt_us = USEC_PER_MSEC;	 /* use nominal default RTT */}bw = (u64)tp->snd_cwnd * BW_UNIT;do_div(bw, rtt_us);sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
}/* pacing_rate是控制速率的关键手段* Pace using current bw estimate and a gain factor. In order to help drive the* network toward lower queues while maintaining high utilization and low* latency, the average pacing rate aims to be slightly (~1%) lower than the* estimated bandwidth. This is an important aspect of the design. In this* implementation this slightly lower pacing rate is achieved implicitly by not* including link-layer headers in the packet size used for the pacing rate.*/
static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);/*如果未收到ACK则调用初始化速率*/if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))bbr_init_pacing_rate_from_rtt(sk);	if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)sk->sk_pacing_rate = rate;
}/* Return count of segments we want in the skbs we send, or 0 for default. */
static u32 bbr_tso_segs_goal(struct sock *sk)
{struct bbr *bbr = inet_csk_ca(sk);return bbr->tso_segs_goal;
}static void bbr_set_tso_segs_goal(struct sock *sk)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);u32 min_segs;min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),0x7FU);
}/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT 保存上次使用的拥塞窗口*/
static void bbr_save_cwnd(struct sock *sk)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
}/*拥塞窗口事件触发:如果在探测阶段则设置pacing rate*/
static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);if (event == CA_EVENT_TX_START && tp->app_limited) {bbr->idle_restart = 1;/* Avoid pointless buffer overflows: pace at est. bw if we don't* need more speed (we're restarting from idle and app-limited).*/if (bbr->mode == BBR_PROBE_BW)bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);}
}/* Find target cwnd. Right-size the cwnd based on min RTT and the* estimated bottleneck bandwidth:** cwnd = bw * min_rtt * gain = BDP * gain 核心公式** The key factor, gain, controls the amount of queue. While a small gain* builds a smaller queue, it becomes more vulnerable to noise in RTT* measurements (e.g., delayed ACKs or other ACK compression effects). This* noise may cause BBR to under-estimate the rate.** To achieve full performance in high-speed paths, we budget enough cwnd to* fit full-sized skbs in-flight on both end hosts to fully utilize the path:*   - one skb in sending host Qdisc,*   - one skb in sending host TSO/GSO engine*	*   - one skb being received by receiver host LRO/GRO/delayed-ACK engine* 此处解释为啥最少需要4个包	* Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because* in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,* which allows 2 outstanding 2-packet sequences, to try to keep pipe* full even with ACK-every-other-packet delayed ACKs.*/
static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
{struct bbr *bbr = inet_csk_ca(sk);u32 cwnd;u64 w;/* If we've never had a valid RTT sample, cap cwnd at the initial* default. This should only happen when the connection is not using TCP* timestamps and has retransmitted all of the SYN/SYNACK/data packets* ACKed so far. In this case, an RTO can cut cwnd to 1, in which* case we need to slow-start up toward something safe: TCP_INIT_CWND.*/if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */return TCP_INIT_CWND;  /* 初始值10 be safe: cap at default initial cwnd*/w = (u64)bw * bbr->min_rtt_us;/* Apply a gain to the given value, then remove the BW_SCALE shift. */cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;/* Allow enough full-sized skbs in flight to utilize end systems. */cwnd += 3 * bbr->tso_segs_goal;/* Reduce delayed ACKs by rounding up cwnd to the next even number. */cwnd = (cwnd + 1) & ~1U;return cwnd;
}/* 保存窗口,方便从PROBE_RTT进入时恢复* An optimization in BBR to reduce losses: On the first round of recovery, we* follow the packet conservation principle: send P packets per P packets acked.* After that, we slow-start and send at most 2*P packets per P packets acked.* After recovery finishes, or upon undo, we restore the cwnd we had when* recovery started (capped by the target cwnd based on estimated BDP).** TODO(ycheng/ncardwell): implement a rate-based approach.*/
static bool bbr_set_cwnd_to_recover_or_restore(struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;u32 cwnd = tp->snd_cwnd;/* An ACK for P pkts should release at most 2*P packets. We do this* in two steps. First, here we deduct the number of lost packets.* Then, in bbr_set_cwnd() we slow start up toward the target cwnd.*/if (rs->losses > 0)cwnd = max_t(s32, cwnd - rs->losses, 1);if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {/* Starting 1st round of Recovery, so do packet conservation. */bbr->packet_conservation = 1;bbr->next_rtt_delivered = tp->delivered;  /* start round now *//* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */cwnd = tcp_packets_in_flight(tp) + acked;} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {/* Exiting loss recovery; restore cwnd saved before recovery. */bbr->restore_cwnd = 1;bbr->packet_conservation = 0;}bbr->prev_ca_state = state;if (bbr->restore_cwnd) {/* Restore cwnd after exiting loss recovery or PROBE_RTT. */cwnd = max(cwnd, bbr->prior_cwnd);bbr->restore_cwnd = 0;}if (bbr->packet_conservation) {*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);return true;	/* yes, using packet conservation */}*new_cwnd = cwnd;return false;
}/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss* has drawn us down below target), or snap down to target if we're above it.*/
static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,u32 acked, u32 bw, int gain)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);u32 cwnd = 0, target_cwnd = 0;if (!acked)return;if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))goto done;/* If we're below target cwnd, slow start cwnd toward target cwnd. */target_cwnd = bbr_target_cwnd(sk, bw, gain);if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */cwnd = min(cwnd + acked, target_cwnd);else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)cwnd = cwnd + acked;cwnd = max(cwnd, bbr_cwnd_min_target);done:tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);	/* apply global cap */if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
}/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
static bool bbr_is_next_cycle_phase(struct sock *sk,const struct rate_sample *rs)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);bool is_full_length =tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >bbr->min_rtt_us;u32 inflight, bw;/* The pacing_gain of 1.0 paces at the estimated bw to try to fully* use the pipe without increasing the queue.*/if (bbr->pacing_gain == BBR_UNIT)return is_full_length;		/* just use wall clock time */inflight = rs->prior_in_flight;  /* what was in-flight before ACK? */bw = bbr_max_bw(sk);/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at* least pacing_gain*BDP; this may take more than min_rtt if min_rtt is* small (e.g. on a LAN). We do not persist if packets are lost, since* a path with small buffers may not hold that much.*/if (bbr->pacing_gain > BBR_UNIT)return is_full_length &&(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));/* A pacing_gain < 1.0 tries to drain extra queue we added if bw* probing didn't find more bw. If inflight falls to match BDP then we* estimate queue is drained; persisting would underutilize the pipe.*/return is_full_length ||inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
}static void bbr_advance_cycle_phase(struct sock *sk)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);bbr->cycle_mstamp = tp->delivered_mstamp;bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
}/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
static void bbr_update_cycle_phase(struct sock *sk,const struct rate_sample *rs)
{struct bbr *bbr = inet_csk_ca(sk);if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&bbr_is_next_cycle_phase(sk, rs))bbr_advance_cycle_phase(sk);
}static void bbr_reset_startup_mode(struct sock *sk)
{struct bbr *bbr = inet_csk_ca(sk);bbr->mode = BBR_STARTUP;bbr->pacing_gain = bbr_high_gain;bbr->cwnd_gain	 = bbr_high_gain;
}static void bbr_reset_probe_bw_mode(struct sock *sk)
{struct bbr *bbr = inet_csk_ca(sk);bbr->mode = BBR_PROBE_BW;bbr->pacing_gain = BBR_UNIT;bbr->cwnd_gain = bbr_cwnd_gain;bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
}/*PROBE_RTT结束后的状态重置*/
static void bbr_reset_mode(struct sock *sk)
{if (!bbr_full_bw_reached(sk))bbr_reset_startup_mode(sk);elsebbr_reset_probe_bw_mode(sk);
}/* Start a new long-term sampling interval. */
static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);bbr->lt_last_delivered = tp->delivered;bbr->lt_last_lost = tp->lost;bbr->lt_rtt_cnt = 0;
}/* Completely reset long-term bandwidth sampling. */
static void bbr_reset_lt_bw_sampling(struct sock *sk)
{struct bbr *bbr = inet_csk_ca(sk);bbr->lt_bw = 0;bbr->lt_use_bw = 0;bbr->lt_is_sampling = false;bbr_reset_lt_bw_sampling_interval(sk);
}/* Long-term bw sampling interval is done. Estimate whether we're policed. */
static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
{struct bbr *bbr = inet_csk_ca(sk);u32 diff;if (bbr->lt_bw) {  /* do we have bw from a previous interval? *//* Is new bw close to the lt_bw from the previous interval? */diff = abs(bw - bbr->lt_bw);if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||(bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=bbr_lt_bw_diff)) {/* All criteria are met; estimate we're policed. */bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */bbr->lt_use_bw = 1;bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */bbr->lt_rtt_cnt = 0;return;}}bbr->lt_bw = bw;bbr_reset_lt_bw_sampling_interval(sk);
}/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of* Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and* explicitly models their policed rate, to reduce unnecessary losses. We* estimate that we're policed if we see 2 consecutive sampling intervals with* consistent throughput and high packet loss. If we think we're being policed,* set lt_bw to the "long-term" average delivery rate from those 2 intervals.*/
static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);u32 lost, delivered;u64 bw;u32 t;if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */}return;}/* Wait for the first loss before sampling, to let the policer exhaust* its tokens and estimate the steady-state rate allowed by the policer.* Starting samples earlier includes bursts that over-estimate the bw.*/if (!bbr->lt_is_sampling) {if (!rs->losses)return;bbr_reset_lt_bw_sampling_interval(sk);bbr->lt_is_sampling = true;}/* To avoid underestimates, reset sampling if we run out of data. */if (rs->is_app_limited) {bbr_reset_lt_bw_sampling(sk);return;}if (bbr->round_start)bbr->lt_rtt_cnt++;	/* count round trips in this interval */if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)return;		/* sampling interval needs to be longer */if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {bbr_reset_lt_bw_sampling(sk);  /* interval is too long */return;}/* End sampling interval when a packet is lost, so we estimate the* policer tokens were exhausted. Stopping the sampling before the* tokens are exhausted under-estimates the policed rate.*/if (!rs->losses)return;/* Calculate packets lost and delivered in sampling interval. */lost = tp->lost - bbr->lt_last_lost;delivered = tp->delivered - bbr->lt_last_delivered;/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)return;/* Find average delivery rate in this sampling interval. */t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;if ((s32)t < 1)return;		/* interval is less than one ms, so wait *//* Check if can multiply without overflow */if (t >= ~0U / USEC_PER_MSEC) {bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */return;}t *= USEC_PER_MSEC;bw = (u64)delivered * BW_UNIT;do_div(bw, t);bbr_lt_bw_interval_done(sk, bw);
}/* Estimate the bandwidth based on how fast packets are delivered */
static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);u64 bw;bbr->round_start = 0;if (rs->delivered < 0 || rs->interval_us <= 0)return; /* Not a valid observation *//* See if we've reached the next RTT */if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {bbr->next_rtt_delivered = tp->delivered;bbr->rtt_cnt++;bbr->round_start = 1;bbr->packet_conservation = 0;}bbr_lt_bw_sampling(sk, rs);/* Divide delivered by the interval to find a (lower bound) bottleneck* bandwidth sample. Delivered is in packets and interval_us in uS and* ratio will be <<1 for most connections. So delivered is first scaled.*/bw = (u64)rs->delivered * BW_UNIT;do_div(bw, rs->interval_us);/* If this sample is application-limited, it is likely to have a very* low delivered count that represents application behavior rather than* the available network rate. Such a sample could drag down estimated* bw, causing needless slow-down. Thus, to continue to send at the* last measured network rate, we filter out app-limited samples unless* they describe the path bw at least as well as our bw model.** So the goal during app-limited phase is to proceed with the best* network rate no matter how long. We automatically leave this* phase when app writes faster than the network can deliver :)*/if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {/* Incorporate new sample into our max bw filter. */minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);}
}/* Estimate when the pipe is full, using the change in delivery rate: BBR* estimates that STARTUP filled the pipe if the estimated bw hasn't changed by* at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited* rounds. * 通过三轮未增加带宽检测* Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the* higher rwin, 3: we get higher delivery rate samples. Or transient* cross-traffic or radio noise can go away. CUBIC Hystart shares a similar* design goal, but uses delay and inter-ACK spacing instead of bandwidth.* * 第一轮接收窗口探测到了带宽的增加并增加窗口* 第二轮填满接收窗口* 第三轮返回高的传输速率*/
static void bbr_check_full_bw_reached(struct sock *sk,const struct rate_sample *rs)
{struct bbr *bbr = inet_csk_ca(sk);u32 bw_thresh;if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)return;bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;if (bbr_max_bw(sk) >= bw_thresh) {bbr->full_bw = bbr_max_bw(sk);bbr->full_bw_cnt = 0;return;}++bbr->full_bw_cnt;bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
}/* STARTUP后期,检查管道是否满了,满了则切换至DRAIN * If pipe is probably full, drain the queue and then enter steady-state. */
static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
{struct bbr *bbr = inet_csk_ca(sk);if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {bbr->mode = BBR_DRAIN;	/* drain queue we created */bbr->pacing_gain = bbr_drain_gain;	/* pace slow to drain */bbr->cwnd_gain = bbr_high_gain;	/* maintain cwnd */}	/* fall through to check if in-flight is already small: */if (bbr->mode == BBR_DRAIN &&tcp_packets_in_flight(tcp_sk(sk)) <=bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
}/* PROBE_RTT状态* The goal of PROBE_RTT mode is to have BBR flows cooperatively and* periodically drain the bottleneck queue, to converge to measure the true* min_rtt (unloaded propagation delay). This allows the flows to keep queues* small (reducing queuing delay and packet loss) and achieve fairness among* BBR flows.** The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,* we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.* After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed* round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and* re-enter the previous mode. BBR uses 200ms to approximately bound the* performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).** Note that flows need only pay 2% if they are busy sending over the last 10* seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have* natural silences or low-rate periods within 10 seconds where the rate is low* enough for long enough to drain its queue in the bottleneck. We pick up* these min RTT measurements opportunistically with our min_rtt filter. :-)** 若在PROBE_RTT结束时,根据当前网络状况决定进入STARTUP还是PROBE_BW*/
static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);bool filter_expired;/* Track min RTT seen in the min_rtt_win_sec filter window: */filter_expired = after(tcp_jiffies32,bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);if (rs->rtt_us >= 0 &&(rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {bbr->min_rtt_us = rs->rtt_us;bbr->min_rtt_stamp = tcp_jiffies32;}if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&!bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */bbr->pacing_gain = BBR_UNIT;bbr->cwnd_gain = BBR_UNIT;bbr_save_cwnd(sk);  /* note cwnd so we can restore it */bbr->probe_rtt_done_stamp = 0;}if (bbr->mode == BBR_PROBE_RTT) {/* Ignore low rate samples during this mode. */tp->app_limited =(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;/* Maintain min packets in flight for max(200 ms, 1 round). */if (!bbr->probe_rtt_done_stamp &&tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {bbr->probe_rtt_done_stamp = tcp_jiffies32 +msecs_to_jiffies(bbr_probe_rtt_mode_ms);bbr->probe_rtt_round_done = 0;bbr->next_rtt_delivered = tp->delivered;} else if (bbr->probe_rtt_done_stamp) {if (bbr->round_start)bbr->probe_rtt_round_done = 1;if (bbr->probe_rtt_round_done &&after(tcp_jiffies32, bbr->probe_rtt_done_stamp)) {bbr->min_rtt_stamp = tcp_jiffies32;bbr->restore_cwnd = 1;  /* snap to prior_cwnd */bbr_reset_mode(sk);}}}bbr->idle_restart = 0;
}/*全状态更新函数如下所列*/
static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
{bbr_update_bw(sk, rs);bbr_update_cycle_phase(sk, rs);bbr_check_full_bw_reached(sk, rs);bbr_check_drain(sk, rs);bbr_update_min_rtt(sk, rs);
}static void bbr_main(struct sock *sk, const struct rate_sample *rs)
{struct bbr *bbr = inet_csk_ca(sk);u32 bw;bbr_update_model(sk, rs);bw = bbr_bw(sk);bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);bbr_set_tso_segs_goal(sk);bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
}static void bbr_init(struct sock *sk)
{struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);bbr->prior_cwnd = 0;bbr->tso_segs_goal = 0;	 /* default segs per skb until first ACK */bbr->rtt_cnt = 0;bbr->next_rtt_delivered = 0;bbr->prev_ca_state = TCP_CA_Open;bbr->packet_conservation = 0;bbr->probe_rtt_done_stamp = 0;bbr->probe_rtt_round_done = 0;bbr->min_rtt_us = tcp_min_rtt(tp);bbr->min_rtt_stamp = tcp_jiffies32;minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */bbr->has_seen_rtt = 0;bbr_init_pacing_rate_from_rtt(sk);bbr->restore_cwnd = 0;bbr->round_start = 0;bbr->idle_restart = 0;bbr->full_bw_reached = 0;bbr->full_bw = 0;bbr->full_bw_cnt = 0;bbr->cycle_mstamp = 0;bbr->cycle_idx = 0;bbr_reset_lt_bw_sampling(sk);bbr_reset_startup_mode(sk);cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
}static u32 bbr_sndbuf_expand(struct sock *sk)
{/* Provision 3 * cwnd since BBR may slow-start even during recovery. */return 3;
}/* In theory BBR does not need to undo the cwnd since it does not* always reduce cwnd on losses (see bbr_main()). Keep it for now.*/
static u32 bbr_undo_cwnd(struct sock *sk)
{struct bbr *bbr = inet_csk_ca(sk);bbr->full_bw = 0;   /* spurious slow-down; reset full pipe detection */bbr->full_bw_cnt = 0;bbr_reset_lt_bw_sampling(sk);return tcp_sk(sk)->snd_cwnd;
}/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
static u32 bbr_ssthresh(struct sock *sk)
{bbr_save_cwnd(sk);return TCP_INFINITE_SSTHRESH;	 /* BBR does not use ssthresh */
}static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,union tcp_cc_info *info)
{if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||ext & (1 << (INET_DIAG_VEGASINFO - 1))) {struct tcp_sock *tp = tcp_sk(sk);struct bbr *bbr = inet_csk_ca(sk);u64 bw = bbr_bw(sk);bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;memset(&info->bbr, 0, sizeof(info->bbr));info->bbr.bbr_bw_lo		= (u32)bw;info->bbr.bbr_bw_hi		= (u32)(bw >> 32);info->bbr.bbr_min_rtt		= bbr->min_rtt_us;info->bbr.bbr_pacing_gain	= bbr->pacing_gain;info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;*attr = INET_DIAG_BBRINFO;return sizeof(info->bbr);}return 0;
}static void bbr_set_state(struct sock *sk, u8 new_state)
{struct bbr *bbr = inet_csk_ca(sk);if (new_state == TCP_CA_Loss) {struct rate_sample rs = { .losses = 1 };bbr->prev_ca_state = TCP_CA_Loss;bbr->full_bw = 0;bbr->round_start = 1;	/* treat RTO like end of a round */bbr_lt_bw_sampling(sk, &rs);}
}static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {.flags		= TCP_CONG_NON_RESTRICTED,.name		= "bbr",.owner		= THIS_MODULE,.init		= bbr_init,.cong_control	= bbr_main,.sndbuf_expand	= bbr_sndbuf_expand,.undo_cwnd	= bbr_undo_cwnd,.cwnd_event	= bbr_cwnd_event,.ssthresh	= bbr_ssthresh,.tso_segs_goal	= bbr_tso_segs_goal,.get_info	= bbr_get_info,.set_state	= bbr_set_state,
};static int __init bbr_register(void)
{BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);return tcp_register_congestion_control(&tcp_bbr_cong_ops);
}static void __exit bbr_unregister(void)
{tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
}module_init(bbr_register);
module_exit(bbr_unregister);MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
2.小结

  BBR算法的特色在于摒弃了30年以来旧有的框架,是一种虽然不是全新但是很多年来未有人继续研究的新的框架。在CSDN和知乎上有不少很精彩的评论分析贴,不推荐看CSDN上某大神的大量文献资料(搜BBR最容易搜到的大神),因为个人感情色彩过于强烈、表述也有些条例上的问题,不过图做的很棒。知乎上有一篇关于BBR算法优势的帖子非常值得一学。当然,最值得学习的还是源码和论文。(这里不得不吐槽谷歌小哥的论文写的真的是相当的烂)

  个人认为BBR算法值得去学习、改良,因为这种控制面和数据面解耦、不敏感于丢包的算法其实是TCP一大改进方向。总觉得TCP和UDP的改进最后应该是趋于互相学习优点剔除缺点,而BBR可以说是在这方面进了一大步。


欢迎关注本人公众号,公众号会更新一些不一样的内容,相信一定会有所收获。
在这里插入图片描述

这篇关于TCP拥塞控制算法BBR源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138076

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

QT实现TCP客户端自动连接

《QT实现TCP客户端自动连接》这篇文章主要为大家详细介绍了QT中一个TCP客户端自动连接的测试模型,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录版本 1:没有取消按钮 测试效果测试代码版本 2:有取消按钮测试效果测试代码版本 1:没有取消按钮 测试效果缺陷:无法手动停