深度学习从入门到精通——yolov3算法介绍

2024-09-05 04:52

本文主要是介绍深度学习从入门到精通——yolov3算法介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLO v3

  • 论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf
  • 论文:YOLOv3: An Incremental Improvement

img

先验框

(10×13),(16×30),(33×23),(30×61),(62×45),(59× 119), (116 × 90), (156 × 198),(373 × 326) ,顺序为w × h

  1. Yolov3中,只有卷积层,通过调节卷积步长控制输出特征图的尺寸。所以对于输入图片尺寸没 有特别限制。
  2. Yolov3借鉴了金字塔特征图思想,小尺寸特征图用于检测大尺寸物体,而大尺寸特征图检测小 尺寸物体。特征图的输出维度为 N × N × [ 3 × ( 4 + 1 + 80 ) ] , N × N N \times N \times[3 \times(4+1+80)], N \times N N×N×[3×(4+1+80)],N×N 为输出特征 图格点数,一共3个Anchor框,每个框有 4 维预测框数值 t x , t y , t w , t h , 1 t_{x}, t_{y}, t_{w}, t_{h} , 1 tx,ty,tw,th1 维预测框置信度, 80 维物体类别数。所以第一层特征图的输出维度为 8 × 8 × 255 8 \times 8 \times 255 8×8×255
  3. 多尺度输出:Yolov3总共输出3个特征图,第一个特征图下采样32倍,第二个特征图下采样16倍,第三个下 采样8倍。输入图像经过Darknet-53 (无全连接层),再经过Yoloblock生成的特征图被当作两 用,第一用为经过 3 ∗ 3 3^{*} 3 33 卷积层、 1 ∗ 1 1^{*} 1 11 卷积之后生成特征图一,第二用为经过 1 ∗ 1 1^{*} 1 11 卷积层加上采样层,与Darnet-53网络的中间层输出结果进行拼接,产生特征图二。同样的循环之后产生特征图。
  4. concat操作与加和操作的区别:加和操作来源于ResNet思想,将输入的特征图,与输出特征图 对应维度进行相加,即 y = f ( x ) + x y=f(x)+x y=f(x)+x ;而concat操作源于DenseNet网络的设计思路,将 特征图按照通道维度直接进行拼接,例如 8 ∗ 8 ∗ 16 8^{*} 8^{*} 16 8816 的特征图与 8 ∗ 8 ∗ 16 8^{*} 8^{*} 16 8816 的特征图拼接后生成 8 ∗ 8 ∗ 32 8^{*} 8^{*} 32 8832 的特征图。
  5. 上采样层(upsample):作用是将小尺寸特征图通过揷值等方法,生成大尺寸图像。例如使用最 近邻揷值算法,将 8 ∗ 8 8^{*} 8 88 的图像变换为 1 6 ∗ 16 16^{*} 16 1616 。上采样层不改变特征图的通道数。

Yolo的整个网络,吸取了Resnet、Densenet、FPN的精髓,可以说是融合了目标检测当前业界最 有效的全部技巧。

每个框的输出

针对coco:80(类别)+ t x , t y , t w , t h , c o n f t_{x}, t_{y}, t_{w}, t_{h} ,conf tx,ty,tw,thconf(每个框的x,y,w,h,conf) ,一共85,三个框 :85*3 = 255

损失函数

使用交叉熵进行类别计算6.Ground Truth的计算

Ground Truth

既然网络预测的是偏移值,那么在计算损失时,也是按照偏移值计算损失。现在我们有预测的值, 还需要真值Ground Truth的偏移值,用于计算损失的GT按照以下公式得到:
t x = G x − C x t y = G y − C y t w = log ⁡ ( G w / P w ) t h = log ⁡ ( G h / P h ) \begin{aligned} t x &=G x-C x \\ t y &=G y-C y \\ t w &=\log (G w / P w) \\ t h &=\log (G h / P h) \end{aligned} txtytwth=GxCx=GyCy=log(Gw/Pw)=log(Gh/Ph)

为什么在计算Ground Truth的tw,th时需要缩放到对数空间

tw和th是物体所在边框的长宽和anchor box长宽之间的比率。不直接回归bounding box的长 宽,而是为避免训练带来不稳定的梯度,将尺度缩放到对数空间。如果直接预测相对形变tw 和 th,那么要求tw, th > 0 >0 >0 ,因为框的宽高不可能是负数,这样的话是在做一个有不等式条件约束的优 化问题,没法直接用SGD来做,所以先取一个对数变换,将其不等式约束去掉就可以了。

对于三个框,选取IOU值最大的那个框。

  • 每个GT目标仅与一个anchor相关联,与GT匹配的anchor box计算坐标误差、置信度误差(此时target为1)以及分类误差,而其他anchor box只计算置信度误差(此时target为0)。
  • 对于重叠大于等于0.5的其他先验框(anchor),忽略,不算损失
  • 总的来说,正样本是与GT的IOU最大的框。负样本是与GT的IOU<0.5的框。忽略的样本是与GT的IOU>0.5 但不是最大的框。

代码实现

SPP

class SPP(nn.Module):# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729def __init__(self, c1, c2, k=(5, 9, 13)):super().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])def forward(self, x):x = self.cv1(x)with warnings.catch_warnings():warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warningreturn self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

BottleneckCSP

class BottleneckCSP(nn.Module):# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworksdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)self.cv4 = Conv(2 * c_, c2, 1, 1)self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)self.act = nn.SiLU()self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

Bottleneck

class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

这篇关于深度学习从入门到精通——yolov3算法介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138003

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx