【python因果推断库6】使用 pymc 模型的工具变量建模 (IV)1

2024-09-05 04:20

本文主要是介绍【python因果推断库6】使用 pymc 模型的工具变量建模 (IV)1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

使用 pymc 模型的工具变量建模 (IV)


使用 pymc 模型的工具变量建模 (IV)

这份笔记展示了一个使用工具变量模型(Instrumental Variable, IV)的例子。我们将会遵循 Acemoglu, Johnson 和 Robinson (2001) 的一个案例研究,该研究尝试解开强大的政治机构对于以国内生产总值(GDP)衡量的经济生产力的影响。本示例借鉴了Hansen的《计量经济学》以及Acemoglu等人关于“殖民主义起源、繁荣及持久影响”的讨论。

import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.lines import Line2D
from sklearn.linear_model import LinearRegression as sk_lin_regimport causalpy as cp
from causalpy.pymc_experiments import InstrumentalVariable
from causalpy.pymc_models import InstrumentalVariableRegression
%load_ext autoreload
%autoreload 2
%config InlineBackend.figure_format = 'retina'
seed = 42
np.random.seed(seed)

这项工作的目的是考察各个被殖民国家在以对数GDP形式的不同结果,作为政治制度稳健性的一种度量函数,这里的稳健性度量为:风险。这个变量是对抗财产剥夺的法律保护程度的评分。评分越高,表示可用的法律保护越多。在实验情境中,你可能会期待处理变量是二元的,但在这里它是连续的,就像剂量一样。想法是法律和政治制度结构具有长期的好处,因为各个殖民地在不同的殖民力量下受到不同的对待(具有不同程度的制度发展),所以论点是我们有可能利用这类数据来估计政治制度对GDP的影响。

用一张图来表示:

在这里,协变量包含一个处理变量(risk),它通过未测量的历史(unmeasured history)这一中介值与结果(log-gdp)相关联,违反了OLS假设中的独立性。想法是通过引入我们的工具变量logmort0来恢复无偏的处理效应,该变量假设只通过其对(risk)的影响与(unmeasured history)相关。

这种相对简单的图在政策采纳的情境中相当常见,其中我们关心的是某个处理/政策()对人口的影响,其中()是一些影响采纳的度量。在医学情境中,第一阶段()被称为“意向治疗”回归。由于这种与政策实施的关系,工具变量回归在行业中往往非常有用。

我们现在将具体展示如何在 CausalPy 中估计这类回归,以便在这种由DAG特征化的情境中恢复准确的参数。

N = 100
e1 = np.random.normal(0, 3, N)
e2 = np.random.normal(0, 1, N)
Z = np.random.uniform(0, 1, N)
## Ensure the endogeneity of the the treatment variable
X = -1 + 4 * Z + e2 + 2 * e1
y = 2 + 3 * X + 3 * e1test_data = pd.DataFrame({"y": y, "X": X, "Z": Z})sample_kwargs = {"tune": 1000,"draws": 2000,"chains": 4,"cores": 4,"target_accept": 0.99,
}
instruments_formula = "X  ~ 1 + Z"
formula = "y ~  1 + X"
instruments_data = test_data[["X", "Z"]]
data = test_data[["y", "X"]]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)
az.summary(iv.model.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

我们可以看到,beta_z 参数针对 X 变量接近真实值 3。

这篇关于【python因果推断库6】使用 pymc 模型的工具变量建模 (IV)1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137931

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只