pytorch+深度学习实现图像的神经风格迁移

2024-09-05 02:36

本文主要是介绍pytorch+深度学习实现图像的神经风格迁移,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文的完整代码和部署教程已上传至本人的GitHub仓库,欢迎各位朋友批评指正!

1.各代码文件详解

1.1 train.py

train.py 文件负责训练神经风格迁移模型。

  • 加载内容和风格图片:使用 utils.load_image 函数加载并预处理内容和风格图片。
  • 初始化生成图像:将内容图像加上随机噪声作为初始生成图像。
  • 加载模型:实例化并加载神经风格迁移模型。
  • 设置优化器和损失函数:使用 Adam 优化器和均方误差损失函数。
  • 定义内容损失和风格损失的计算函数:包括 _compute_content_loss, compute_content_loss, gram_matrix, _compute_style_loss, compute_style_loss, 和 total_loss
  • 计算目标内容图片和风格图片的特征:通过模型提取内容和风格特征。
  • 创建保存生成图片的文件夹:检查并创建输出目录。
  • 训练过程:使用 tqdm 显示训练进度条,进行多轮训练,每轮训练后保存生成的图片。

1.2 model.py

model.py 文件定义了神经风格迁移模型。

  • 定义获取 VGG19 模型的函数get_vgg19_model 函数从预训练的 VGG19 模型中提取指定层。
  • 定义神经风格迁移模型类NeuralStyleTransferModel 类继承自 nn.Module,包含模型的初始化和前向传播方法。

1.3 utils.py

utils.py 文件包含图像处理的辅助函数。

  • 定义图像归一化和反归一化函数normalizationdenormalization 函数对图像进行归一化和反归一化处理。
  • 定义加载和保存图像的函数load_image 函数加载并预处理图像,save_image 函数保存生成的图像。

1.4 settings.py

settings.py 文件包含训练过程中的各种配置参数。

  • 定义各种配置参数:包括内容图像路径、风格图像路径、输出目录、图像宽度和高度、学习率、训练轮数、每轮训练步数、内容损失和风格损失的权重因子、内容层和风格层的配置。

2.环境要求

  • 操作系统:Windows, macOS, 或 Linux
  • Python 版本:Python 3.6 及以上
  • 依赖库
    • torch:用于深度学习模型的构建和训练
    • torchvision:用于图像处理和预训练模型
    • PIL (或 Pillow):用于图像加载和保存
    • tqdm:用于显示训练进度条

3.结果展示

示例一

风格图片

在这里插入图片描述

原始图片

在这里插入图片描述

迁移结果

在这里插入图片描述

示例二

风格图片

在这里插入图片描述

原始图片

在这里插入图片描述

迁移结果

在这里插入图片描述

示例三

风格图片

在这里插入图片描述

原始图片在这里插入图片描述
迁移结果

在这里插入图片描述

本文参考了这一项目,在此深表感谢!这一项目使用的是tensorflow,本文采用的是当今更常用的pytorch。另外在学习过程中阅读了这一教程,这个教程也是采用了tensorflow,需要先用一个大数据集训练模型,但由于环境版本过旧,代码无法成功运行,将tensorflow改为pytorch后(代码在这个仓库),发现训练时间过长,且迁移效果很差,遂不采用这种思路,转为神经风格迁移,直接学习风格图片的特征并运用到原始图片上,训练速度很快且效果较好。

这篇关于pytorch+深度学习实现图像的神经风格迁移的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137723

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创