【C】快速傅里叶变换(FFT)讲解及实现

2024-09-05 00:38

本文主要是介绍【C】快速傅里叶变换(FFT)讲解及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 引言
  • 基2FFT

1.引言

人类的求知欲是永无止境的,自1965年 T. W. Cooley 和 J. W. Tuky 在《Math. Computation, Vol, 19, 1965》发表了著名的《 An algorithm for the machine calculation of complex Fourier series 》,人们对 有关傅里叶变换的改进和创新就从未止步。1984年,P. Dohamel 和 H. Hollmann 提出的分裂基快速算法,使得算法的运算速率上升到了新台阶。
直至今日,已提出的快速算法有多种,还有很多学者在不断研究探索新的快速算法。
本文仅介绍最经典的基2FFT算法原理及编程思想。

2.基2FFT

基2FFT算法分为两类:时域抽取法FFT(Decimation-In-Time FFT, 简称 DIT - FFT);
     频域抽取法FFT(Decimation-In-Frequnency FFT, 简称 DIF - FFT);

2.1 FFT 基本思想

对于信号的N点离散傅里叶变化(Discrete Fourier Transform, DFT),DFT的复乘次数为N*N, 复加次数为N*(N-1),当N = 1024时,N*N = 1048576,显然实时信号处理对时间的苛刻要求对应于当代硬件是一个矛盾。FFT算法就是不断二分DFT, 利用旋转因子W^m_N的周期性和对称性减少运算量。

周期性表现为:W^(m+iN)_N = e^( -j2*pi/N*(m+iN) ) = e^(-j2*pi/N*m - j2*pi*i) = e^(-j2*pi/N*m) = W^m_N
对称性表现为:W^(-m)_N = W^(N-m)_N  or  W^(m+N/2)_N = -W^m_N

2.2 时域抽取法 基FFT 基本原理

  • 序列x(n)长度为16,满足N=2^M
  • 将序列按照n的奇偶性二分:x(2r)  and x(2r+1)  
  • 再二分,分到不可二分结束。
  • X(k)         = X1(k) + W^k_N*X2(k)
  • X(k+N/2) = X1(k) + W^k_N*X2(k)
  • 即   X(0) + X(0+16/2)   =   X(0)+X(8)      =   X1(0)
  •       X1(0)+X1(0+8/2)   =   X1(0)+X(4)     =   X2(0)
  •       X2(0)+X2(0+4/2)   =   X2(0)+X2(2)   =   X3(0)
  •       X3(0)+X3(0+2/2)   =   X3(0)+X3(1)   =   X4(0)
16点 时域抽取法FFT(简称 DIT - FFT)


计算量:
  • 完成一次蝶形运算 =  1次复数乘法 + 两次复数加法;
  • 计算1个N点DFT    =  2个N/2点DFT +   N/2个蝶形运算。
  • 计算一个N/2点DFT  = (N/2)^2次复数乘法   +  (N/2)(N/2 - 1)次复数加法
  • 可见,一次分解,运算量将近一半
这里附一段大神的解释【更正了其中的一些小错误】:
  • 第一级,每个蝶形的两节点“距离”为1,第二级每个蝶形的两节点“距离”为2,第三级为4,第四级为8【参考上图去理解】
  • 由此推得,第m级蝶形运算,每个蝶形的两节点“距离”  为 Length = 2^(m-1)

  • 对于16级DIT_FFT,第一级有8组蝶形,每组一个蝶形;第二级有4个蝶形,每组两个蝶形;第三级有2个蝶形,每组四个蝶形;第四级有1个蝶形,每组有8个蝶形。

  • 旋转因子W^k_N的确定
  • 以16点FFT为列,第m级第k个旋转因子为, k = 0, 1, ... ,2^m-1, 即m级共有2^m-1个旋转因子。
  • 根据旋转因子的可约性,,所以第m级第k个旋转因子为
并且,这位大神提出,为提高FFT的运算速度,我们可以建立一个旋转因子数组,然后通过查表法实现。【实际上并不实用,仅适用于确定点数且不 再修改的条件下】
//complex WN[N_series] = //旋转因子数组
{//为节省CPU计算时间,旋转因子采用查表法处理// ★ 根据实际FFT的点数N_series,该表数据需自行修改// 以下结果通过Excel自动生成// WN[k].real =  cos(2*PI/N*k);// WN[k].img  = -sin(2*PI/N*k);}



16点 频域抽取法FFT(简称 DIF - FFT)

3.实现



这篇关于【C】快速傅里叶变换(FFT)讲解及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137487

相关文章

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.