【C】快速傅里叶变换(FFT)讲解及实现

2024-09-05 00:38

本文主要是介绍【C】快速傅里叶变换(FFT)讲解及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 引言
  • 基2FFT

1.引言

人类的求知欲是永无止境的,自1965年 T. W. Cooley 和 J. W. Tuky 在《Math. Computation, Vol, 19, 1965》发表了著名的《 An algorithm for the machine calculation of complex Fourier series 》,人们对 有关傅里叶变换的改进和创新就从未止步。1984年,P. Dohamel 和 H. Hollmann 提出的分裂基快速算法,使得算法的运算速率上升到了新台阶。
直至今日,已提出的快速算法有多种,还有很多学者在不断研究探索新的快速算法。
本文仅介绍最经典的基2FFT算法原理及编程思想。

2.基2FFT

基2FFT算法分为两类:时域抽取法FFT(Decimation-In-Time FFT, 简称 DIT - FFT);
     频域抽取法FFT(Decimation-In-Frequnency FFT, 简称 DIF - FFT);

2.1 FFT 基本思想

对于信号的N点离散傅里叶变化(Discrete Fourier Transform, DFT),DFT的复乘次数为N*N, 复加次数为N*(N-1),当N = 1024时,N*N = 1048576,显然实时信号处理对时间的苛刻要求对应于当代硬件是一个矛盾。FFT算法就是不断二分DFT, 利用旋转因子W^m_N的周期性和对称性减少运算量。

周期性表现为:W^(m+iN)_N = e^( -j2*pi/N*(m+iN) ) = e^(-j2*pi/N*m - j2*pi*i) = e^(-j2*pi/N*m) = W^m_N
对称性表现为:W^(-m)_N = W^(N-m)_N  or  W^(m+N/2)_N = -W^m_N

2.2 时域抽取法 基FFT 基本原理

  • 序列x(n)长度为16,满足N=2^M
  • 将序列按照n的奇偶性二分:x(2r)  and x(2r+1)  
  • 再二分,分到不可二分结束。
  • X(k)         = X1(k) + W^k_N*X2(k)
  • X(k+N/2) = X1(k) + W^k_N*X2(k)
  • 即   X(0) + X(0+16/2)   =   X(0)+X(8)      =   X1(0)
  •       X1(0)+X1(0+8/2)   =   X1(0)+X(4)     =   X2(0)
  •       X2(0)+X2(0+4/2)   =   X2(0)+X2(2)   =   X3(0)
  •       X3(0)+X3(0+2/2)   =   X3(0)+X3(1)   =   X4(0)
16点 时域抽取法FFT(简称 DIT - FFT)


计算量:
  • 完成一次蝶形运算 =  1次复数乘法 + 两次复数加法;
  • 计算1个N点DFT    =  2个N/2点DFT +   N/2个蝶形运算。
  • 计算一个N/2点DFT  = (N/2)^2次复数乘法   +  (N/2)(N/2 - 1)次复数加法
  • 可见,一次分解,运算量将近一半
这里附一段大神的解释【更正了其中的一些小错误】:
  • 第一级,每个蝶形的两节点“距离”为1,第二级每个蝶形的两节点“距离”为2,第三级为4,第四级为8【参考上图去理解】
  • 由此推得,第m级蝶形运算,每个蝶形的两节点“距离”  为 Length = 2^(m-1)

  • 对于16级DIT_FFT,第一级有8组蝶形,每组一个蝶形;第二级有4个蝶形,每组两个蝶形;第三级有2个蝶形,每组四个蝶形;第四级有1个蝶形,每组有8个蝶形。

  • 旋转因子W^k_N的确定
  • 以16点FFT为列,第m级第k个旋转因子为, k = 0, 1, ... ,2^m-1, 即m级共有2^m-1个旋转因子。
  • 根据旋转因子的可约性,,所以第m级第k个旋转因子为
并且,这位大神提出,为提高FFT的运算速度,我们可以建立一个旋转因子数组,然后通过查表法实现。【实际上并不实用,仅适用于确定点数且不 再修改的条件下】
//complex WN[N_series] = //旋转因子数组
{//为节省CPU计算时间,旋转因子采用查表法处理// ★ 根据实际FFT的点数N_series,该表数据需自行修改// 以下结果通过Excel自动生成// WN[k].real =  cos(2*PI/N*k);// WN[k].img  = -sin(2*PI/N*k);}



16点 频域抽取法FFT(简称 DIF - FFT)

3.实现



这篇关于【C】快速傅里叶变换(FFT)讲解及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137487

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +