【C】快速傅里叶变换(FFT)讲解及实现

2024-09-05 00:38

本文主要是介绍【C】快速傅里叶变换(FFT)讲解及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 引言
  • 基2FFT

1.引言

人类的求知欲是永无止境的,自1965年 T. W. Cooley 和 J. W. Tuky 在《Math. Computation, Vol, 19, 1965》发表了著名的《 An algorithm for the machine calculation of complex Fourier series 》,人们对 有关傅里叶变换的改进和创新就从未止步。1984年,P. Dohamel 和 H. Hollmann 提出的分裂基快速算法,使得算法的运算速率上升到了新台阶。
直至今日,已提出的快速算法有多种,还有很多学者在不断研究探索新的快速算法。
本文仅介绍最经典的基2FFT算法原理及编程思想。

2.基2FFT

基2FFT算法分为两类:时域抽取法FFT(Decimation-In-Time FFT, 简称 DIT - FFT);
     频域抽取法FFT(Decimation-In-Frequnency FFT, 简称 DIF - FFT);

2.1 FFT 基本思想

对于信号的N点离散傅里叶变化(Discrete Fourier Transform, DFT),DFT的复乘次数为N*N, 复加次数为N*(N-1),当N = 1024时,N*N = 1048576,显然实时信号处理对时间的苛刻要求对应于当代硬件是一个矛盾。FFT算法就是不断二分DFT, 利用旋转因子W^m_N的周期性和对称性减少运算量。

周期性表现为:W^(m+iN)_N = e^( -j2*pi/N*(m+iN) ) = e^(-j2*pi/N*m - j2*pi*i) = e^(-j2*pi/N*m) = W^m_N
对称性表现为:W^(-m)_N = W^(N-m)_N  or  W^(m+N/2)_N = -W^m_N

2.2 时域抽取法 基FFT 基本原理

  • 序列x(n)长度为16,满足N=2^M
  • 将序列按照n的奇偶性二分:x(2r)  and x(2r+1)  
  • 再二分,分到不可二分结束。
  • X(k)         = X1(k) + W^k_N*X2(k)
  • X(k+N/2) = X1(k) + W^k_N*X2(k)
  • 即   X(0) + X(0+16/2)   =   X(0)+X(8)      =   X1(0)
  •       X1(0)+X1(0+8/2)   =   X1(0)+X(4)     =   X2(0)
  •       X2(0)+X2(0+4/2)   =   X2(0)+X2(2)   =   X3(0)
  •       X3(0)+X3(0+2/2)   =   X3(0)+X3(1)   =   X4(0)
16点 时域抽取法FFT(简称 DIT - FFT)


计算量:
  • 完成一次蝶形运算 =  1次复数乘法 + 两次复数加法;
  • 计算1个N点DFT    =  2个N/2点DFT +   N/2个蝶形运算。
  • 计算一个N/2点DFT  = (N/2)^2次复数乘法   +  (N/2)(N/2 - 1)次复数加法
  • 可见,一次分解,运算量将近一半
这里附一段大神的解释【更正了其中的一些小错误】:
  • 第一级,每个蝶形的两节点“距离”为1,第二级每个蝶形的两节点“距离”为2,第三级为4,第四级为8【参考上图去理解】
  • 由此推得,第m级蝶形运算,每个蝶形的两节点“距离”  为 Length = 2^(m-1)

  • 对于16级DIT_FFT,第一级有8组蝶形,每组一个蝶形;第二级有4个蝶形,每组两个蝶形;第三级有2个蝶形,每组四个蝶形;第四级有1个蝶形,每组有8个蝶形。

  • 旋转因子W^k_N的确定
  • 以16点FFT为列,第m级第k个旋转因子为, k = 0, 1, ... ,2^m-1, 即m级共有2^m-1个旋转因子。
  • 根据旋转因子的可约性,,所以第m级第k个旋转因子为
并且,这位大神提出,为提高FFT的运算速度,我们可以建立一个旋转因子数组,然后通过查表法实现。【实际上并不实用,仅适用于确定点数且不 再修改的条件下】
//complex WN[N_series] = //旋转因子数组
{//为节省CPU计算时间,旋转因子采用查表法处理// ★ 根据实际FFT的点数N_series,该表数据需自行修改// 以下结果通过Excel自动生成// WN[k].real =  cos(2*PI/N*k);// WN[k].img  = -sin(2*PI/N*k);}



16点 频域抽取法FFT(简称 DIF - FFT)

3.实现



这篇关于【C】快速傅里叶变换(FFT)讲解及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137487

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja