基于tesseract实现文档OCR识别

2024-09-04 13:36

本文主要是介绍基于tesseract实现文档OCR识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导入环境

导入必要的库
numpy: 用于处理数值计算。
argparse: 用于处理命令行参数。
cv2: OpenCV库,用于图像处理。

import numpy as np
import argparse
import cv2

设置命令行参数

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="images/page.jpg", help="Path to the image to be scanned")
args = vars(ap.parse_args())

定义坐标排序函数

对四个坐标点进行排序,确定文档的四个角(左上,右上,右下,左下)。
使用欧氏距离来计算和排序点。

def order_points(pts):# 一共4个坐标点rect = np.zeros((4, 2), dtype = "float32")# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下s = pts.sum(axis = 1)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]# 计算右上和左下diff = np.diff(pts, axis = 1)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rect
  • 此函数用于排序提供的四个点,确保点的顺序为左上、右上、右下和左下,这对后续的透视变换非常重要。

定义透视变换函数

使用cv2.getPerspectiveTransform和cv2.warpPerspective来计算变换矩阵并应用

def four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0],[maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1],[0, maxHeight - 1]], dtype = "float32")# 计算变换矩阵M = cv2.getPerspectiveTransform(rect, dst)warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))# 返回变换后结果return warped
  • 接收原始图像和四个顶点坐标,然后应用透视变换,从而获取图像的正视图。

定义图像缩放函数

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):dim = None(h, w) = image.shape[:2]if width is None and height is None:return imageif width is None:r = height / float(h)dim = (int(w * r), height)else:r = width / float(w)dim = (width, int(h * r))resized = cv2.resize(image, dim, interpolation=inter)return resized
  • 用于调整图像尺寸,使图像处理过程中的操作更加高效。

主逻辑部分

  • 图像预处理:

    • 读取图像,调整大小,并转换为灰度图。
    • 应用高斯模糊和Canny边缘检测准备图像进行轮廓检测。
  • 轮廓检测:

    • 使用cv2.findContours寻找边缘,这是寻找文档轮廓的关键步骤。
    • 选择轮廓面积最大的前五个轮廓。
  • 透视变换:

    • 对检测到的轮廓(如果准确地检测到四点)应用透视变换。
    • 将图像从斜视角转换为正视图,便于文档的进一步处理和分析。
  • 结果保存和显示:

    • 应用二值化处理,并保存变换后的扫描图像。
    • 显示原始和扫描后的图像。

关键知识点

  • 高斯模糊 (GaussianBlur): 用于去除图像噪声并平滑图像。
  • Canny边缘检测 (Canny): 用于在图像中检测边缘,是轮廓检测的关键步骤。
  • 轮廓检测 (findContours): 在二值图像中寻找轮廓,用于图形、图像和物体的形状分析。
  • 透视变换 (getPerspectiveTransform, warpPerspective): 在进行文档扫描或修正图像视角时非常有用。
if __name__ == '__main__':# 读取输入image = cv2.imread(args["image"])#坐标也会相同变化ratio = image.shape[0] / 500.0orig = image.copy()image = resize(orig, height = 500)# 预处理gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray, (5, 5), 0)edged = cv2.Canny(gray, 75, 200)# 展示预处理结果print("STEP 1: 边缘检测")cv2.imshow("Image", image)cv2.imshow("Edged", edged)cv2.waitKey(0)cv2.destroyAllWindows()# 轮廓检测 opencv3# cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[1][0]# cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]# 使用OpenCV 4.x的方式来调用findContourscontours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)# 确保轮廓是适当的数据类型cnts = [np.array(cnt, dtype='float32') for cnt in contours]# 排序并选择最大的5个轮廓cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]# 遍历轮廓screenCnt  =  Nonefor c in cnts:# 计算轮廓近似peri = cv2.arcLength(c, True)# C表示输入的点集# epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数# True表示封闭的approx = cv2.approxPolyDP(c, 0.02 * peri, True)# 4个点的时候就拿出来if len(approx) == 4:screenCnt = approx.astype(int)breakif screenCnt is not None:# 展示结果print("STEP 2: 获取轮廓")# print(screenCnt)cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)cv2.imshow("Outline", image)cv2.waitKey(0)cv2.destroyAllWindows()# 透视变换warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)# 二值处理warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]cv2.imwrite('scan.jpg', ref)# 展示结果print("STEP 3: 变换")cv2.imshow("Original", resize(orig, height = 650))cv2.imshow("Scanned", resize(ref, height = 650))cv2.waitKey(0)
  • Canny算子检测结果图:
    在这里插入图片描述

  • 定 四个顶点
    在这里插入图片描述

  • 仿射变换结果

  • 在这里插入图片描述

OCR识别

Tesseract 是一个开源的光学字符识别(OCR)引擎,最初由惠普实验室于1985年开发,并在2006年由Google赞助成为一个开源项目。Tesseract 能够识别多种格式的图像文件并将它们转换成文本。它支持多种语言的识别,并且可以通过训练来识别新的语言或优化现有语言的识别效果。

主要特点:

  1. 多语言支持:Tesseract 支持100多种语言的识别。
  2. 高度可定制:用户可以训练Tesseract来识别新的字体或优化特定语言的识别。
  3. 多种输出格式:Tesseract 可以输出普通文本、hOCR(带有布局信息的HTML)、PDF等格式。
  4. 集成易用:可以通过命令行使用,也可通过其API集成到其他应用程序中,比如通过pytesseract在Python中使用。

使用方法:

在命令行中,Tesseract 可以简单地通过指定输入图像和输出文件名来使用,如:

tesseract image.png output -l eng

这里-l eng指定了使用英语语言包。

pytesseract:

在Python中,pytesseract是一个将Tesseract引擎功能封装的库,允许Python直接调用Tesseract进行图像到文本的转换。使用前需要确保Tesseract已安装在系统上,并且正确配置了环境变量或在pytesseracttesseract_cmd属性中指定了Tesseract的路径。

应用场景:

  • 文档数字化:将纸质文档扫描后识别为数字文本。
  • 自动化表单处理:从填写的表单中提取信息。
  • 车牌识别:用于交通监控或自动收费系统。
  • 辅助技术:帮助视觉障碍人士阅读印刷材料。

Tesseract是一个功能强大的工具,因其开源和高效被广泛用于商业和研究领域。

1. 导入必要的库

  • PIL (Python Imaging Library): 用于图像的打开和处理。
  • pytesseract: 是Google的Tesseract-OCR引擎的Python封装,用于识别图像中的文字。
  • cv2 (OpenCV): 用于图像处理的库,这里用于读取和预处理图像。
from PIL import Image
import pytesseract
import cv2
import os

2. 图像预处理

  • 读取图像: 使用cv2.imread读取图像文件。
  • 转换为灰度图: 使用cv2.cvtColor将读取的彩色图像转换为灰度图,因为OCR通常在灰度图上进行。
  • 应用阈值或模糊处理:
    • 如果预处理方式为"thresh"(阈值),使用cv2.threshold应用阈值化处理,这可以帮助去除背景噪声并突出文本。
    • 如果预处理方式为"blur"(模糊),使用cv2.medianBlur应用中值模糊,以减少图像噪声。
preprocess = 'blur' #threshimage = cv2.imread('scan.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)if preprocess == "thresh":gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]if preprocess == "blur":gray = cv2.medianBlur(gray, 3)

3. 保存处理后的图像

  • 保存文件: 使用cv2.imwrite将处理后的灰度图像临时保存为一个新文件,文件名由当前进程ID命名。

4. 文本识别

  • 使用pytesseract.image_to_string函数读取步骤3中保存的灰度图像文件,识别其中的文本。
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, gray)text = pytesseract.image_to_string(Image.open(filename))
print(text)
os.remove(filename)cv2.imshow("Image", image)
cv2.imshow("Output", gray)
cv2.waitKey(0)                                   

5. 输出和清理

  • 打印识别的文本
  • 删除临时文件: 使用os.remove删除保存的临时图像文件。
  • 显示图像: 使用cv2.imshow展示原始图像和处理后的图像。
  • 等待按键: 使用cv2.waitKey(0)暂停程序,等待用户按键继续。

知识点总结

  • OpenCV的灰度转换和图像滤波:灰度转换有助于简化数据,滤波有助于减少噪声,这两者都是提高OCR准确性的关键步骤。
  • 阈值处理与模糊处理的选择:不同的图像预处理方法适用于不同类型的图像和需求,阈值处理适用于高对比度图像,而模糊处理适用于噪声较多的图像。
  • pytesseract的使用:封装了Tesseract-OCR引擎,能够从图像中识别和提取文字。

通过仿射变换矫正后图像为:

在这里插入图片描述

识别结果为:
在这里插入图片描述

源码上传地址

链接 ----------------上传地址 文档OCR识别(tesseract)

这篇关于基于tesseract实现文档OCR识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136159

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4