基于tesseract实现文档OCR识别

2024-09-04 13:36

本文主要是介绍基于tesseract实现文档OCR识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导入环境

导入必要的库
numpy: 用于处理数值计算。
argparse: 用于处理命令行参数。
cv2: OpenCV库,用于图像处理。

import numpy as np
import argparse
import cv2

设置命令行参数

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="images/page.jpg", help="Path to the image to be scanned")
args = vars(ap.parse_args())

定义坐标排序函数

对四个坐标点进行排序,确定文档的四个角(左上,右上,右下,左下)。
使用欧氏距离来计算和排序点。

def order_points(pts):# 一共4个坐标点rect = np.zeros((4, 2), dtype = "float32")# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下s = pts.sum(axis = 1)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]# 计算右上和左下diff = np.diff(pts, axis = 1)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rect
  • 此函数用于排序提供的四个点,确保点的顺序为左上、右上、右下和左下,这对后续的透视变换非常重要。

定义透视变换函数

使用cv2.getPerspectiveTransform和cv2.warpPerspective来计算变换矩阵并应用

def four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0],[maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1],[0, maxHeight - 1]], dtype = "float32")# 计算变换矩阵M = cv2.getPerspectiveTransform(rect, dst)warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))# 返回变换后结果return warped
  • 接收原始图像和四个顶点坐标,然后应用透视变换,从而获取图像的正视图。

定义图像缩放函数

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):dim = None(h, w) = image.shape[:2]if width is None and height is None:return imageif width is None:r = height / float(h)dim = (int(w * r), height)else:r = width / float(w)dim = (width, int(h * r))resized = cv2.resize(image, dim, interpolation=inter)return resized
  • 用于调整图像尺寸,使图像处理过程中的操作更加高效。

主逻辑部分

  • 图像预处理:

    • 读取图像,调整大小,并转换为灰度图。
    • 应用高斯模糊和Canny边缘检测准备图像进行轮廓检测。
  • 轮廓检测:

    • 使用cv2.findContours寻找边缘,这是寻找文档轮廓的关键步骤。
    • 选择轮廓面积最大的前五个轮廓。
  • 透视变换:

    • 对检测到的轮廓(如果准确地检测到四点)应用透视变换。
    • 将图像从斜视角转换为正视图,便于文档的进一步处理和分析。
  • 结果保存和显示:

    • 应用二值化处理,并保存变换后的扫描图像。
    • 显示原始和扫描后的图像。

关键知识点

  • 高斯模糊 (GaussianBlur): 用于去除图像噪声并平滑图像。
  • Canny边缘检测 (Canny): 用于在图像中检测边缘,是轮廓检测的关键步骤。
  • 轮廓检测 (findContours): 在二值图像中寻找轮廓,用于图形、图像和物体的形状分析。
  • 透视变换 (getPerspectiveTransform, warpPerspective): 在进行文档扫描或修正图像视角时非常有用。
if __name__ == '__main__':# 读取输入image = cv2.imread(args["image"])#坐标也会相同变化ratio = image.shape[0] / 500.0orig = image.copy()image = resize(orig, height = 500)# 预处理gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray, (5, 5), 0)edged = cv2.Canny(gray, 75, 200)# 展示预处理结果print("STEP 1: 边缘检测")cv2.imshow("Image", image)cv2.imshow("Edged", edged)cv2.waitKey(0)cv2.destroyAllWindows()# 轮廓检测 opencv3# cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[1][0]# cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]# 使用OpenCV 4.x的方式来调用findContourscontours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)# 确保轮廓是适当的数据类型cnts = [np.array(cnt, dtype='float32') for cnt in contours]# 排序并选择最大的5个轮廓cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]# 遍历轮廓screenCnt  =  Nonefor c in cnts:# 计算轮廓近似peri = cv2.arcLength(c, True)# C表示输入的点集# epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数# True表示封闭的approx = cv2.approxPolyDP(c, 0.02 * peri, True)# 4个点的时候就拿出来if len(approx) == 4:screenCnt = approx.astype(int)breakif screenCnt is not None:# 展示结果print("STEP 2: 获取轮廓")# print(screenCnt)cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)cv2.imshow("Outline", image)cv2.waitKey(0)cv2.destroyAllWindows()# 透视变换warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)# 二值处理warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]cv2.imwrite('scan.jpg', ref)# 展示结果print("STEP 3: 变换")cv2.imshow("Original", resize(orig, height = 650))cv2.imshow("Scanned", resize(ref, height = 650))cv2.waitKey(0)
  • Canny算子检测结果图:
    在这里插入图片描述

  • 定 四个顶点
    在这里插入图片描述

  • 仿射变换结果

  • 在这里插入图片描述

OCR识别

Tesseract 是一个开源的光学字符识别(OCR)引擎,最初由惠普实验室于1985年开发,并在2006年由Google赞助成为一个开源项目。Tesseract 能够识别多种格式的图像文件并将它们转换成文本。它支持多种语言的识别,并且可以通过训练来识别新的语言或优化现有语言的识别效果。

主要特点:

  1. 多语言支持:Tesseract 支持100多种语言的识别。
  2. 高度可定制:用户可以训练Tesseract来识别新的字体或优化特定语言的识别。
  3. 多种输出格式:Tesseract 可以输出普通文本、hOCR(带有布局信息的HTML)、PDF等格式。
  4. 集成易用:可以通过命令行使用,也可通过其API集成到其他应用程序中,比如通过pytesseract在Python中使用。

使用方法:

在命令行中,Tesseract 可以简单地通过指定输入图像和输出文件名来使用,如:

tesseract image.png output -l eng

这里-l eng指定了使用英语语言包。

pytesseract:

在Python中,pytesseract是一个将Tesseract引擎功能封装的库,允许Python直接调用Tesseract进行图像到文本的转换。使用前需要确保Tesseract已安装在系统上,并且正确配置了环境变量或在pytesseracttesseract_cmd属性中指定了Tesseract的路径。

应用场景:

  • 文档数字化:将纸质文档扫描后识别为数字文本。
  • 自动化表单处理:从填写的表单中提取信息。
  • 车牌识别:用于交通监控或自动收费系统。
  • 辅助技术:帮助视觉障碍人士阅读印刷材料。

Tesseract是一个功能强大的工具,因其开源和高效被广泛用于商业和研究领域。

1. 导入必要的库

  • PIL (Python Imaging Library): 用于图像的打开和处理。
  • pytesseract: 是Google的Tesseract-OCR引擎的Python封装,用于识别图像中的文字。
  • cv2 (OpenCV): 用于图像处理的库,这里用于读取和预处理图像。
from PIL import Image
import pytesseract
import cv2
import os

2. 图像预处理

  • 读取图像: 使用cv2.imread读取图像文件。
  • 转换为灰度图: 使用cv2.cvtColor将读取的彩色图像转换为灰度图,因为OCR通常在灰度图上进行。
  • 应用阈值或模糊处理:
    • 如果预处理方式为"thresh"(阈值),使用cv2.threshold应用阈值化处理,这可以帮助去除背景噪声并突出文本。
    • 如果预处理方式为"blur"(模糊),使用cv2.medianBlur应用中值模糊,以减少图像噪声。
preprocess = 'blur' #threshimage = cv2.imread('scan.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)if preprocess == "thresh":gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]if preprocess == "blur":gray = cv2.medianBlur(gray, 3)

3. 保存处理后的图像

  • 保存文件: 使用cv2.imwrite将处理后的灰度图像临时保存为一个新文件,文件名由当前进程ID命名。

4. 文本识别

  • 使用pytesseract.image_to_string函数读取步骤3中保存的灰度图像文件,识别其中的文本。
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, gray)text = pytesseract.image_to_string(Image.open(filename))
print(text)
os.remove(filename)cv2.imshow("Image", image)
cv2.imshow("Output", gray)
cv2.waitKey(0)                                   

5. 输出和清理

  • 打印识别的文本
  • 删除临时文件: 使用os.remove删除保存的临时图像文件。
  • 显示图像: 使用cv2.imshow展示原始图像和处理后的图像。
  • 等待按键: 使用cv2.waitKey(0)暂停程序,等待用户按键继续。

知识点总结

  • OpenCV的灰度转换和图像滤波:灰度转换有助于简化数据,滤波有助于减少噪声,这两者都是提高OCR准确性的关键步骤。
  • 阈值处理与模糊处理的选择:不同的图像预处理方法适用于不同类型的图像和需求,阈值处理适用于高对比度图像,而模糊处理适用于噪声较多的图像。
  • pytesseract的使用:封装了Tesseract-OCR引擎,能够从图像中识别和提取文字。

通过仿射变换矫正后图像为:

在这里插入图片描述

识别结果为:
在这里插入图片描述

源码上传地址

链接 ----------------上传地址 文档OCR识别(tesseract)

这篇关于基于tesseract实现文档OCR识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136159

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一