基于纠错码的哈希函数构造方案

2024-09-04 04:52

本文主要是介绍基于纠错码的哈希函数构造方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

随着大数据时代的到来,交通数据量急剧增加,由此带来的交通安全问题日益凸显。传统的驾驶人信用管理系统在数据存储和管理上存在着诸多不足之处,例如中心化存储方案无法有效地进行信用存证及数据溯源。区块链技术以其去中心化和不可篡改的特性,在数据存储和管理方面展现出了巨大的潜力。区块链的固有特性也带来了另一个挑战——一旦数据被写入区块链,几乎不可能对其进行修改,这在某些情况下是不利的。为了解决这一问题,当前文章重点研究了如何构建具有高随机性的哈希算法——高度随机哈希函数(HRHF)。HRHF算法通过结合纠错码与SM3算法的Merkle-Damgård迭代结构,不仅增强了哈希值的随机性,还保证了算法的安全性和执行效率。实验结果显示,与经典的SHA-256算法相比,HRHF算法在多个关键指标上均有显著提升。

HRHF算法结合了纠错码与SM3算法的Merkle-Damgård迭代结构,通过这种方式增强了哈希值的随机性。选用了纠错能力更强的线性分组码与SM3算法相结合,并构造生成哈希值具有更强随机性的哈希函数。实验结果显示该算法不仅具有理想的雪崩效应特性,而且攻击者更难以逆推出原始消息,从而具备了更高的算法安全性。

二、算法设计原理

2.1 算法的创新点

(1)通过调整循环左移位数来进一步提升哈希值的随机性;

(2)通过优化迭代结构来提高算法的执行效率。

算法的具体使用流程:

  1. 初始化状态向量,为生成256位哈希值准备。
  2. 计算纠错码的生成矩阵。
  3. 对生成矩阵进行循环左移操作以增加随机性。
  4. 对输入数据进行迭代压缩操作。
  5. 输出最终的256位哈希值。

2.2 实现代码(C++)

#include <iostream>
#include <vector>
#include <cstdint>
#include <cassert>// 哈希值长度
constexpr size_t HASH_LENGTH = 32; // 256 bits// 线性分组码参数
constexpr size_t CODE_LENGTH = 32; // 码长
constexpr size_t CODE_DIMENSION = 6; // 维度// 生成矩阵初始化
std::vector<std::vector<uint32_t>> generateMatrix() {// 实际应用中需要通过算法计算得到std::vector<std::vector<uint32_t>> matrix(CODE_DIMENSION, std::vector<uint32_t>(CODE_LENGTH));// 示例矩阵for (size_t i = 0; i < CODE_DIMENSION; ++i) {matrix[i][i] = 1;}return matrix;
}// 生成码字
std::vector<uint32_t> generateCodeWord(const std::vector<std::vector<uint32_t>>& matrix) {std::vector<uint32_t> codeWord(CODE_LENGTH);// 假设这里使用生成矩阵生成码字for (size_t i = 0; i < CODE_LENGTH; ++i) {codeWord[i] = 0; // 初始化码字for (size_t j = 0; j < CODE_DIMENSION; ++j) {// 模2加法codeWord[i] ^= matrix[j][i];}}return codeWord;
}// 循环左移
uint32_t rotateLeft(uint32_t value, int shift) {return (value << shift) | (value >> (32 - shift));
}// 消息预处理
std::vector<uint32_t> preprocessMessage(const std::vector<uint8_t>& message) {// 添加消息长度,这里简化处理std::vector<uint8_t> extendedMessage = message;extendedMessage.push_back(0x80); // 添加结束标志extendedMessage.insert(extendedMessage.end(), 8, 0x00); // 添加长度占位符// 将消息转换为32位整数数组std::vector<uint32_t> words;for (size_t i = 0; i < extendedMessage.size(); i += 4) {uint32_t word = 0;for (size_t j = 0; j < 4 && i + j < extendedMessage.size(); ++j) {word |= static_cast<uint32_t>(extendedMessage[i + j]) << (24 - 8 * j);}words.push_back(word);}return words;
}// 消息扩展
void extendMessage(std::vector<uint32_t>& words) {const size_t WORD_COUNT = 64; // 扩展后的字数量while (words.size() < WORD_COUNT) {uint32_t w = words.back();uint32_t w16 = words[words.size() - 16];words.push_back(w16 ^ rotateLeft(w16, 9) ^ rotateLeft(w16, 17) ^rotateLeft(w, 15) ^ rotateLeft(w, 23));}
}// 布尔函数
uint32_t ff(uint32_t x, uint32_t y, uint32_t z, size_t j) {if (j >= 16 && j <= 63) {return x ^ y ^ z;}else {return (x & y) | ((~x) & z);}
}// 布尔函数
uint32_t gg(uint32_t x, uint32_t y, uint32_t z, size_t j) {if (j >= 16 && j <= 63) {return x ^ y ^ z;}else {return (x & y) | (x & z) | (y & z);}
}// 压缩函数
void compress(std::vector<uint32_t>& state, const std::vector<uint32_t>& words) {const size_t ROUND_COUNT = 64; // 迭代次数const size_t STATE_SIZE = 8; // 状态寄存器大小const uint32_t T[ROUND_COUNT] = { /* 常量表 */ };std::vector<uint32_t> ss1(STATE_SIZE), ss2(STATE_SIZE), tt1(STATE_SIZE), tt2(STATE_SIZE);for (size_t i = 0; i < ROUND_COUNT; ++i) {// 中间变量更新ss1[i] = rotateLeft(state[0], 7) + rotateLeft(state[4], 12);ss2[i] = ss1[i] ^ rotateLeft(state[0], 12);tt1[i] = ff(state[0], state[1], state[2], i) + state[3] + ss2[i] + words[i];tt2[i] = gg(state[4], state[5], state[6], i) + state[7] + ss1[i] + words[i + 64];// 状态寄存器更新state[0] = state[1];state[1] = state[2];state[2] = state[3];state[3] = tt1[i];state[4] = state[5];state[5] = state[6];state[6] = state[7];state[7] = tt2[i];}
}// 主算法
std::vector<uint8_t> hrhf(const std::vector<uint8_t>& message) {std::vector<uint32_t> state(HASH_LENGTH / 4, 0); // 初始化寄存器std::vector<std::vector<uint32_t>> matrix = generateMatrix();std::vector<uint32_t> codeWord = generateCodeWord(matrix);// 循环左移操作以增加随机性for (size_t i = 0; i < CODE_DIMENSION; ++i) {codeWord[i] = rotateLeft(codeWord[i], 6); // 循环左移6位}// 将码字分配给初始寄存器for (size_t i = 0; i < HASH_LENGTH / 4; ++i) {state[i] = codeWord[i % CODE_DIMENSION];}// 消息预处理std::vector<uint32_t> words = preprocessMessage(message);// 打印预处理后的消息std::cout << "Preprocessed Message: ";for (const auto& word : words) {std::cout << word << " ";}std::cout << std::endl;// 消息扩展extendMessage(words);// 打印扩展后的消息std::cout << "Extended Message: ";for (const auto& word : words) {std::cout << word << " ";}std::cout << std::endl;// 迭代压缩compress(state, words);// 将32位整数转换为256位哈希值std::vector<uint8_t> hash(HASH_LENGTH);for (size_t i = 0; i < HASH_LENGTH / 4; ++i) {uint32_t word = state[i];for (size_t j = 0; j < 4; ++j) {hash[i * 4 + j] = word >> (24 - 8 * j);}}return hash;
}int main() {std::vector<uint8_t> message = { 'q', 'y', 'x' };std::vector<uint8_t> hash = hrhf(message);std::cout << "Hash Value: ";for (auto b : hash) {printf("%02x", b);}std::cout << std::endl;return 0;
}

运行结果:

image-20240730151621899

2.3 创新部分

(1)循环左移位数的优化: 通过调整循环左移位数可以进一步提升哈希值的随机性。实验结果显示,在循环左移6位时,信息熵数值最高,这表明构造的初始常量值随机性最高,符合HRHF算法的设计目标。

(2)迭代结构的优化: 通过优化迭代结构,提升了算法的执行效率。实验结果表明,在输入消息长度为401080字节的条件下,HRHF算法可以在1秒内完成4502000次运算,与SM3算法的运算效率基本一致,这表明HRHF算法可以支持快速运算。

2.4 对比实验结果

在相同的迭代结构下,HRHF算法的输出哈希值熵值相对于SM3算法有所增加,同时在哈希值长度都为256位的情况下,HRHF算法的轮函数复杂性更高,所产生的哈希值信息熵也高于SHA-256算法,这表明HRHF算法基于线性分组码在哈希值长度和迭代结构之间达到了有效的平衡,使得哈希值具有更高的随机性,同时也更好地隐藏了输入输出之间的关联性。 HRHF算法在运算效率和内存损耗方面也表现出了优势。

2.5 Python代码实现

import struct# 哈希值长度
HASH_LENGTH = 32  # 256 bits# 线性分组码参数
CODE_LENGTH = 32  # 码长
CODE_DIMENSION = 6  # 维度# 生成矩阵初始化
def generate_matrix():matrix = [[0] * CODE_LENGTH for _ in range(CODE_DIMENSION)]# 示例矩阵for i in range(CODE_DIMENSION):matrix[i][i] = 1return matrix# 生成码字
def generate_code_word(matrix):code_word = [0] * CODE_LENGTH# 使用生成矩阵生成码字for i in range(CODE_LENGTH):for j in range(CODE_DIMENSION):# 模2加法code_word[i] ^= matrix[j][i]return code_word# 循环左移
def rotate_left(value, shift):return ((value << shift) & 0xFFFFFFFF) | (value >> (32 - shift))# 消息预处理
def preprocess_message(message):extended_message = list(message) + [0x80] + [0x00] * 8  # 添加长度占位符words = []for i in range(0, len(extended_message), 4):word = 0for j in range(min(4, len(extended_message) - i)):word |= extended_message[i + j] << (24 - 8 * j)words.append(word)return words# 消息扩展
def extend_message(words):# 确保words至少有16个元素while len(words) < 16:words.append(0)  # 添加零填充while len(words) < 128:w = words[-1]w16 = words[-16]words.append((w16 ^ rotate_left(w16, 9) ^ rotate_left(w16, 17)) ^(rotate_left(w, 15) ^ rotate_left(w, 23)))# 布尔函数
def ff(x, y, z, j):if 16 <= j <= 63:return x ^ y ^ zelse:return (x & y) | ((~x) & z)# 布尔函数
def gg(x, y, z, j):if 16 <= j <= 63:return x ^ y ^ zelse:return (x & y) | (x & z) | (y & z)# 压缩函数
def compress(state, words):for i in range(64):# 中间变量更新ss1 = rotate_left(state[0], 7) + rotate_left(state[4], 12)ss1 &= 0xFFFFFFFF  # Ensure 32-bitss2 = ss1 ^ rotate_left(state[0], 12)tt1 = ff(state[0], state[1], state[2], i) + state[3] + ss2 + words[i]tt1 &= 0xFFFFFFFF  # Ensure 32-bittt2 = gg(state[4], state[5], state[6], i) + state[7] + ss1 + words[i + 64]tt2 &= 0xFFFFFFFF  # Ensure 32-bit# 状态寄存器更新state = [state[1],state[2],state[3],tt1,state[5],state[6],state[7],tt2]return state# 主算法
def hrhf(message):state = [0] * (HASH_LENGTH // 4)  # 初始化寄存器matrix = generate_matrix()code_word = generate_code_word(matrix)# 循环左移操作以增加随机性for i in range(CODE_DIMENSION):code_word[i] = rotate_left(code_word[i], 6)  # 循环左移6位# 将码字分配给初始寄存器for i in range(HASH_LENGTH // 4):state[i] = code_word[i % CODE_DIMENSION]# 消息预处理words = preprocess_message(message)# 消息扩展extend_message(words)# 迭代压缩state = compress(state, words)# 将32位整数转换为256位哈希值hash_value = bytearray(HASH_LENGTH)for i in range(HASH_LENGTH // 4):word = state[i]for j in range(4):hash_value[i * 4 + j] = (word >> (24 - 8 * j)) & 0xFFreturn hash_valueif __name__ == "__main__":message = b'qyx222'hash_value = hrhf(message)print(hash_value.hex())

image-20240801095925091

这篇关于基于纠错码的哈希函数构造方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135053

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

如何选择SDR无线图传方案

在开源软件定义无线电(SDR)领域,有几个项目提供了无线图传的解决方案。以下是一些开源SDR无线图传方案: 1. **OpenHD**:这是一个远程高清数字图像传输的开源解决方案,它使用SDR技术来实现高清视频的无线传输。OpenHD项目提供了一个完整的工具链,包括发射器和接收器的硬件设计以及相应的软件。 2. **USRP(Universal Software Radio Periphera

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)