解决AutoDL远程服务器训练大模型的常见问题:CPU内存不足与 SSH 断开

本文主要是介绍解决AutoDL远程服务器训练大模型的常见问题:CPU内存不足与 SSH 断开,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在使用远程服务器(如 AutoDL)进行深度学习训练时,通常会遇到一些常见问题,比如由于数据加载导致的内存消耗过高,以及 SSH 连接中断后训练任务被迫停止。这篇文章将介绍我在这些问题上遇到的挑战,并分享相应的解决方案。

问题 1:内存消耗过高导致训练中断

问题描述

在深度学习大模型训练过程中,数据加载是一个消耗内存的重要环节。特别是在使用大规模数据集和多线程数据加载时,内存消耗可能会迅速增长,最终导致训练任务因内存不足而中断。

解决方案:优化数据加载策略

为了解决这个问题,可以通过以下两个关键策略来优化数据加载,从而降低内存消耗,提升训练效率:

  1. 持久化工作线程 (persistent_workers=True)

    作用
    persistent_workers=True 可以让数据加载的工作线程在每个 epoch 结束后保持活动状态,而不是每次重新启动线程。这减少了线程创建和销毁的开销,从而提高了内存利用效率。

    示例

    train_dataloader = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle=True,num_workers=4,  # 使用 4 个工作线程persistent_workers=True  # 启用持久化工作线程
    )
    

    效果
    持久化工作线程后,避免了每个 epoch 重新创建线程的开销,有效降低了内存消耗,尤其适合长时间训练任务。

  2. 启用固定内存 (pin_memory=True)

    作用
    pin_memory=True 将数据加载到固定内存(pinned memory)中,加速数据从 CPU 到 GPU 的传输。这不仅减少了数据加载时间,还降低了内存的使用峰值。

    示例

    train_dataloader = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle=True,num_workers=4,pin_memory=True  # 启用固定内存
    )
    

    效果
    启用 pin_memory=True 后,数据传输更加高效,CPU 内存压力减小,降低了整体内存占用。在 GPU 加速的训练中,这一设置可以显著减少数据加载对训练过程的瓶颈影响。

综合应用
在实际训练中,结合使用 persistent_workers=Truepin_memory=True 可以大幅优化数据加载的效率和内存管理,特别是在处理大规模数据集时效果显著。

train_dataloader = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle=True,num_workers=4,persistent_workers=True,  # 持久化工作线程pin_memory=True  # 启用固定内存
)

问题 2:SSH 连接断开导致训练中断

问题描述

当通过 SSH 连接到远程服务器进行训练时,如果 SSH 连接因网络问题或其他原因断开,训练任务也会被迫停止。这对于长时间的深度学习训练尤其致命,因为一旦中断,所有进度将丢失,需要重新开始。

解决方案:使用 tmux 保持训练任务的持续性

为了解决 SSH 断开导致的训练中断问题,可以使用 tmux 会话管理工具。tmux 允许你在一个持久的会话中启动训练任务,即使 SSH 连接断开,任务仍然会继续运行,且可以在重新连接后恢复到之前的会话。

安装 tmux

首先,需要在服务器上安装 tmux

sudo apt-get install tmux
使用 tmux 的步骤
  1. 启动一个新的 tmux 会话:

    tmux
    
  2. 在会话中运行训练脚本:

    bash train_lora_512.sh
    
  3. Ctrl+b,然后按 d 键,退出会话(任务将继续在后台运行)。

  4. 重新连接到会话:

    tmux attach
    

使用 tmux 后,即使 SSH 连接断开,训练任务仍能持续进行,并且你可以在重新连接后恢复会话,不会丢失任何进度。

实时监控日志文件

在远程训练过程中,实时监控日志文件非常重要。可以使用 tail -f 命令实时查看日志文件的最后几行内容,确保你能够跟踪训练的进展。

tail -f -n 20 processed_data/train.log
  • -f:持续跟踪文件的更新。
  • -n 20:显示日志文件的最后 20 行。

结论

通过合理的内存管理策略(如持久化工作线程和固定内存),可以有效控制训练过程中的内存消耗,避免因内存不足导致的训练中断。而使用 tmux 可以确保 SSH 连接断开后训练任务仍能持续进行,结合实时监控日志文件的方法,能够极大提升远程训练的效率和可靠性。这些策略在长时间、大规模数据集的训练中尤其重要,是解决深度学习训练中常见问题的有效手段。

在这里插入图片描述

这篇关于解决AutoDL远程服务器训练大模型的常见问题:CPU内存不足与 SSH 断开的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134992

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll