解决AutoDL远程服务器训练大模型的常见问题:CPU内存不足与 SSH 断开

本文主要是介绍解决AutoDL远程服务器训练大模型的常见问题:CPU内存不足与 SSH 断开,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在使用远程服务器(如 AutoDL)进行深度学习训练时,通常会遇到一些常见问题,比如由于数据加载导致的内存消耗过高,以及 SSH 连接中断后训练任务被迫停止。这篇文章将介绍我在这些问题上遇到的挑战,并分享相应的解决方案。

问题 1:内存消耗过高导致训练中断

问题描述

在深度学习大模型训练过程中,数据加载是一个消耗内存的重要环节。特别是在使用大规模数据集和多线程数据加载时,内存消耗可能会迅速增长,最终导致训练任务因内存不足而中断。

解决方案:优化数据加载策略

为了解决这个问题,可以通过以下两个关键策略来优化数据加载,从而降低内存消耗,提升训练效率:

  1. 持久化工作线程 (persistent_workers=True)

    作用
    persistent_workers=True 可以让数据加载的工作线程在每个 epoch 结束后保持活动状态,而不是每次重新启动线程。这减少了线程创建和销毁的开销,从而提高了内存利用效率。

    示例

    train_dataloader = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle=True,num_workers=4,  # 使用 4 个工作线程persistent_workers=True  # 启用持久化工作线程
    )
    

    效果
    持久化工作线程后,避免了每个 epoch 重新创建线程的开销,有效降低了内存消耗,尤其适合长时间训练任务。

  2. 启用固定内存 (pin_memory=True)

    作用
    pin_memory=True 将数据加载到固定内存(pinned memory)中,加速数据从 CPU 到 GPU 的传输。这不仅减少了数据加载时间,还降低了内存的使用峰值。

    示例

    train_dataloader = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle=True,num_workers=4,pin_memory=True  # 启用固定内存
    )
    

    效果
    启用 pin_memory=True 后,数据传输更加高效,CPU 内存压力减小,降低了整体内存占用。在 GPU 加速的训练中,这一设置可以显著减少数据加载对训练过程的瓶颈影响。

综合应用
在实际训练中,结合使用 persistent_workers=Truepin_memory=True 可以大幅优化数据加载的效率和内存管理,特别是在处理大规模数据集时效果显著。

train_dataloader = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle=True,num_workers=4,persistent_workers=True,  # 持久化工作线程pin_memory=True  # 启用固定内存
)

问题 2:SSH 连接断开导致训练中断

问题描述

当通过 SSH 连接到远程服务器进行训练时,如果 SSH 连接因网络问题或其他原因断开,训练任务也会被迫停止。这对于长时间的深度学习训练尤其致命,因为一旦中断,所有进度将丢失,需要重新开始。

解决方案:使用 tmux 保持训练任务的持续性

为了解决 SSH 断开导致的训练中断问题,可以使用 tmux 会话管理工具。tmux 允许你在一个持久的会话中启动训练任务,即使 SSH 连接断开,任务仍然会继续运行,且可以在重新连接后恢复到之前的会话。

安装 tmux

首先,需要在服务器上安装 tmux

sudo apt-get install tmux
使用 tmux 的步骤
  1. 启动一个新的 tmux 会话:

    tmux
    
  2. 在会话中运行训练脚本:

    bash train_lora_512.sh
    
  3. Ctrl+b,然后按 d 键,退出会话(任务将继续在后台运行)。

  4. 重新连接到会话:

    tmux attach
    

使用 tmux 后,即使 SSH 连接断开,训练任务仍能持续进行,并且你可以在重新连接后恢复会话,不会丢失任何进度。

实时监控日志文件

在远程训练过程中,实时监控日志文件非常重要。可以使用 tail -f 命令实时查看日志文件的最后几行内容,确保你能够跟踪训练的进展。

tail -f -n 20 processed_data/train.log
  • -f:持续跟踪文件的更新。
  • -n 20:显示日志文件的最后 20 行。

结论

通过合理的内存管理策略(如持久化工作线程和固定内存),可以有效控制训练过程中的内存消耗,避免因内存不足导致的训练中断。而使用 tmux 可以确保 SSH 连接断开后训练任务仍能持续进行,结合实时监控日志文件的方法,能够极大提升远程训练的效率和可靠性。这些策略在长时间、大规模数据集的训练中尤其重要,是解决深度学习训练中常见问题的有效手段。

在这里插入图片描述

这篇关于解决AutoDL远程服务器训练大模型的常见问题:CPU内存不足与 SSH 断开的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134992

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU