5.2.数据结构-c/c++二叉树详解(下篇)(算法面试题)

2024-09-04 03:04

本文主要是介绍5.2.数据结构-c/c++二叉树详解(下篇)(算法面试题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章所有代码请见:5.3.数据结构-c/c++二叉树代码-CSDN博客

上篇:5.数据结构-c/c++二叉树详解(上篇)(遍历方法,完全二叉树)-CSDN博客 

目录

1 求二叉树 第k层的节点

2 查找一个节点是否在二叉树中

3 求二叉树节点的个数

4 求二叉树叶子节点的个数

5 求树的深度

6 判断一棵树是否为完全二叉树


1 求二叉树 第k层的节点

        思路:我们要求第k层结点个数,需要传入参数k。利用递归思想,我们从上到下没下一层,让k--,当k=1的时候到达第k层。

        然后我们让每一个结果返回1即可

如下图,计算第三层结点的递归图

      

函数返回值的返回图

这样就能够准确得出k层的节点数

代码

//求二叉树第k层结点的个数
int TreeKSize(BTNode* root, int k)
{if (root == nullptr)return 0;if (k == 1)return 1;return TreeKSize(root->left, k - 1) + TreeKSize(root->right, k - 1);
}

2 查找一个节点是否在二叉树中

只需使用遍历方法遍历一遍同时查找即可,遍历方法详见二叉树遍历

//查找某个结点是否在二叉树中
BTNode* TreeFind(BTNode* root, BTDataType x)
{if (root == nullptr)return nullptr;if (root->data == x)return root;BTNode* node1 = TreeFind(root->left, x);if (node1 != nullptr)return node1;BTNode* node2 = TreeFind(root->right, x);if (node2 != nullptr)return node2;
}

3 求二叉树节点的个数

有两种方法

1.遍历

//遍历
void TreeSize1(BTNode* root, int* psize)
{if (root == nullptr)return;else(*psize)++;TreeSize1(root->left, psize);TreeSize1(root->right, psize);
}

2.分治

分治的思想类似于第1题,求k个节点个数。

第一题让k层节点都返回1,最后得到答案

而这里让每一个节点都返回1,最后就能返回节点的个数

//分治
int TreeSize2(BTNode* root)
{if (root == nullptr)return 0;elsereturn 1 + TreeSize2(root->left) + TreeSize2(root->right);
}

4 求二叉树叶子节点的个数

与第一题类似,这里只要保证返回的条件是叶子节点(左右孩子都为空的节点)

//求叶子节点个数
int TreeLeafSize(BTNode* root)
{if (root == nullptr)return 0;//保证遇到叶子节点的时候返回1if (root->left == nullptr && root->right == nullptr)return 1;//分治且其他所有节点都不返回值return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

5 求树的深度

求一棵树的深度,只要找到最深一层的结点即可

如下图,红色表示深一层结点向上返回,黑色表示其他节点返回

每一次返回的时候,返回较大的一个值即可

//求树的深度
int TreeDepth(BTNode* root)
{if (root == nullptr)return 0;int leftdepth = TreeDepth(root->left);int rightdepth = TreeDepth(root->right);if (leftdepth > rightdepth)return leftdepth + 1;elsereturn rightdepth + 1;
}

6 判断一棵树是否为完全二叉树

        要判断一棵树是否为完全二叉树,只要判断树最后一层结点是否只集中在左侧且其他层结点都是满的。

思路:

        我们依次将所有结点放入一个队列中(如果遇到空结点也放入队列中),遇到空结点的时候退出,再判断队列中还有无结点,如果有不为空的结点,则说明该二叉树不是完全二叉树。

例图:

代码

//判断一棵树是否为完全二叉树
bool TreeComplete(BTNode* root)
{queue<BTNode*> q;//空树是完全二叉树if (!root)	return true;q.push(root);while (!q.empty()){BTNode* front = q.front();q.pop();if (front == nullptr)break;q.push(front->left);q.push(front->right);}//判断while (!q.empty()){BTNode* front = q.front();q.pop();if (front != nullptr)return false;}return true;
}

7 简单测试

测试代码

int main()
{BTNode* A = CreatNode('A');BTNode* B = CreatNode('B');BTNode* C = CreatNode('C');BTNode* D = CreatNode('D');BTNode* E = CreatNode('E');BTNode* F = CreatNode('F');BTNode* G = CreatNode('G');A->left = B;A->right = C;B->left = D;B->right = E;//C->left = F;C->right = G;int sizeA = 0;TreeSize1(A, &sizeA);cout << "TreeSize1:" << sizeA << endl;cout << "TreeSize2:" << TreeSize2(A) << endl;cout << "TreeLeafSize:" << TreeLeafSize(A) << endl;cout << "TreeDepth:" << TreeDepth(A) << endl;cout << "k=3 TreeKsize:" << TreeKSize(A, 3) << endl;if (TreeComplete(A))cout << "是完全二叉树" << endl;elsecout << "不是完全二叉树" << endl;return 0;
}

测试结果

注释掉F结点

这篇关于5.2.数据结构-c/c++二叉树详解(下篇)(算法面试题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134811

相关文章

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn