Opencv实现提取卡号(数字识别)

2024-09-04 00:44

本文主要是介绍Opencv实现提取卡号(数字识别),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

直接开始

实行方法

  1. 解析命令行参数:使用argparse库来解析命令行输入,确保用户提供了输入图像和模板图像的路径。

  2. 读取模板图像:使用cv2.imread()函数读取模板图像的路径,并显示原始图像。

  3. 图像预处理

    • 将图像转换为灰度图,以简化后续处理。
    • 应用二值化操作(使用阈值10)将图像转换为二值图像(黑白图),并通过cv2.THRESH_BINARY_INV反转颜色,使前景(数字)为白色,背景为黑色。
    • 显示预处理后的二值图像。
  4. 轮廓检测

    • 使用cv2.findContours()函数在二值图像上检测轮廓。这里只检测外部轮廓,并使用cv2.CHAIN_APPROX_SIMPLE方法来简化轮廓形状。
    • 在原始图像上绘制检测到的轮廓,并显示结果。
  5. 轮廓排序

    • 使用自定义的myutils.sort_contours()函数对检测到的轮廓进行排序,这里假设该函数按照从左到右的顺序排序轮廓。

自定义的myutils库

import cv2def sort_contours(cnts, method='left to-right'):reverse = Falsei = 0if method == 'right-to-left' or method == 'bottom-to-top':reverse = Trueif method == 'top-to-bottom' or method == 'bottom-to-top':i = 1boundingBoxes = [cv2.boundingRect(c) for c in cnts](cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),key=lambda b: b[1][i], reverse=reverse))return cnts, boundingBoxesdef resize(image,width=None,height=None ,inter=cv2.INTER_AREA):dim = None(h, w) = image.shape[:2]if width is None and height is None:return imageif width is None:r = height / float(h)dim = (int(w * r), height)else:r = width / float(w)dim = (width, int(h * r))resized = cv2.resize(image, dim, interpolation=inter)  # 默认为cV2.INTER_AREA,即面积插值,适用于缩放图像。return resized
  1. 数字模板提取

    • 遍历排序后的轮廓,对每个轮廓计算其外接矩形,并裁剪出相应的区域(ROI,Region of Interest)。
    • 将每个裁剪出的ROI区域缩放到固定大小(57x88),以便于后续与输入图像中的数字进行匹配。
    • 将每个缩放后的ROI存储到digits字典中,其中键为轮廓的索引,值为对应的数字模板图像。

接下来,你可能会想要使用这些数字模板与输入图像中的数字进行匹配,以确定输入图像中每个数字的具体值。这通常涉及到模板匹配技术,如使用cv2.matchTemplate()函数。

  • 读取输入图像。
  • 对输入图像进行类似的预处理步骤。
  • 在输入图像上检测可能的数字区域。
  • 对每个检测到的数字区域,使用提取的模板进行匹配,以确定其值。
  • 根据识别出的数字进行进一步的处理或分析(如确定信用卡类型等)。
import argparse
import cv2
import myutilsap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,help="path to input image")
ap.add_argument("-t", "--template", required=True,help="path to template OCR-A image")
args = vars(ap.parse_args())#创建ArgumentParser对象来解析命令行参数。
#添加两个必需的参数:-i/--image(输入图像路径)和-t/--template(模板图像路径)。
#使用parse_args()解析命令行输入,并将结果转换为字典存储在args中。FIRST_NUMBER = {"3": "American Express","4": "Visa","5": "MasterCard","6": "Discover Card"
}
#定义一个字典,将信用卡号码的首位数字映射到对应的信用卡类型。def cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(0)
#一个简单的函数,用于在窗口中显示图像,并等待用户按键。img = cv2.imread(args["template"])
cv_show('img', img)ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show('ref', ref)
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
cv_show('ref', ref)
# 计算轮廓:cv2.findcontours()函数接受的参数为二值图,
# 即黑白的(不是灰度图)CV2.RETR_EXTERNAL只检测外轮廓,
# CV2.CHAIN_APPROX_SIMPLE只保留终点坐标
_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, refCnts, -1, (0, 0, 255), 3)
cv_show('img', img)#使用findContours函数检测二值图像中的轮廓。
#在原始图像上绘制检测到的轮廓。
#假设myutils.sort_contours函数存在,并按从左到右的顺序对轮廓进行排序。注意这里[0]可能是为了处理#sort_contours返回值的格式,具体取决于该函数的实现。
#refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0]digits = {}
for (i, c) in enumerate(refCnts):  # 遍历每一个轮廓(x, y, w, h) = cv2.boundingRect(c)  # 计算外接矩形并且resize成合适大小roi = ref[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))  # 缩放到指定的大小digits[i] = roi  # 每一个数字对应每一个模板
#遍历排序后的轮廓。
#对每个轮廓,计算其外接矩形,并裁剪出相应的区域(ROI)。
#将每个ROI缩放到固定大小(57x88)。
#将缩放后的ROI存储在digits字典中,键为轮廓的索引

代码效果:

这篇关于Opencv实现提取卡号(数字识别)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134515

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ