Spark实战(五)spark streaming + flume(Python版)

2024-09-03 23:18

本文主要是介绍Spark实战(五)spark streaming + flume(Python版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、flume安装

(一)概述

   Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS、hbase、hive、kafka等众多外部存储系统中,一般的采集需求,通过对flume的简单配置即可实现,Flume针对特殊场景也具备良好的自定义扩展能力,因此flume可以适用于大部分的日常数据采集场景

(二)运行机制

   1、 Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成

   2、 每一个agent相当于一个数据传递员,内部有三个组件:

a)	Source:采集源,用于跟数据源对接,以获取数据
b)	Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据
c)	Channel:angent内部的数据传输通道,用于从source将数据传递到sink

在这里插入图片描述

(三)Flume采集系统结构图

1、简单结构

   单个agent采集数据

在这里插入图片描述

2、复杂结构

   多级agent之间串联
在这里插入图片描述

(四)Flume的安装部署

   1、去apache官网上下载安装包,并解压tar -zxvf apache-flume-1.8.0-bin,并修改conf目录下flume-env.sh,在里面配置JAVA_HOME

   2、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)
   3、指定采集方案配置文件,在相应的节点上启动flume agent

二、flume push方式

1、spark streaming程序

   首先是flume通过push方式将采集到的数据传递到spark程序上,这种方式基本不用。spark代码如下:

import pyspark
from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.flume import FlumeUtilsif __name__ == "__main__":spark = SparkSession\.builder\.appName("PythonWordCount") \.master("local[2]") \.getOrCreate()sc = spark.sparkContextssc = StreamingContext(sc, 5)# hostname = sys.argv[1]# port = int(sys.argv[2])flumeStream = FlumeUtils.createStream(ssc, "localhost", 8888, pyspark.StorageLevel.MEMORY_AND_DISK_SER_2)line = flumeStream.map(lambda x: x[1])words = line.flatMap(lambda x: x.split(" "))datas = words.map(lambda x: (x, 1))result = datas.reduceByKey(lambda agg, obj: agg + obj)result.pprint()ssc.start()ssc.awaitTermination()

   注意:要指定并行度,如在本地运行设置setMaster(“local[2]”),相当于启动两个线程,一个给receiver,一个给computer。否则会出现如下问题

2019-01-09 19:36:16 INFO  ReceiverSupervisorImpl:54 - Called receiver 0 onStart
2019-01-09 19:36:16 INFO  ReceiverSupervisorImpl:54 - Waiting for receiver to be stopped
2019-01-09 19:36:20 INFO  JobScheduler:54 - Added jobs for time 1547033780000 ms
2019-01-09 19:36:25 INFO  JobScheduler:54 - Added jobs for time 1547033785000 ms
2019-01-09 19:36:30 INFO  JobScheduler:54 - Added jobs for time 1547033790000 ms
2019-01-09 19:36:35 INFO  JobScheduler:54 - Added jobs for time 1547033795000 ms
2019-01-09 19:36:40 INFO  JobScheduler:54 - Added jobs for time 1547033800000 ms

   如果是在集群中运行,必须要求集群中可用core数大于1

2、flume conf文件

<font size=4>&emsp; &emsp;在flume的conf目录下新建flume-push.conf内容如下</font></br>
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1# source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/hadoop/log/flume
a1.sources.r1.fileHeader = true# Describe the sink
a1.sinks.k1.type = avro
#这是接收方
a1.sinks.k1.hostname = 192.168.62.131
a1.sinks.k1.port = 8888# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

   需要先将spark程序运行,使用以下命令:

spark/bin/spark-submit  --driver-class-path /home/hadoop/spark/jars/*:/home/hadoop/jar/flume/* /tmp/pycharm_project_563/day5/FlumePushWordCount.py

   可能会出现以下问题

	Spark Streaming's Flume libraries not found in class path. Try one of the following.1. Include the Flume library and its dependencies with in thespark-submit command as$ bin/spark-submit --packages org.apache.spark:spark-streaming-flume:2.4.0 ...2. Download the JAR of the artifact from Maven Central http://search.maven.org/,Group Id = org.apache.spark, Artifact Id = spark-streaming-flume-assembly, Version = 2.4.0.Then, include the jar in the spark-submit command as$ bin/spark-submit --jars <spark-streaming-flume-assembly.jar> ...
Traceback (most recent call last):File "/tmp/pycharm_project_563/day5/FlumePushWordCount.py", line 12, in <module>flumeStream = FlumeUtils.createStream(ssc, "192.168.62.131", "8888")File "/home/hadoop/spark/python/pyspark/streaming/flume.py", line 67, in createStreamhelper = FlumeUtils._get_helper(ssc._sc)File "/home/hadoop/spark/python/pyspark/streaming/flume.py", line 130, in _get_helperreturn sc._jvm.org.apache.spark.streaming.flume.FlumeUtilsPythonHelper()
TypeError: 'JavaPackage' object is not callable
   需要去maven仓库下载spark-streaming-flume-assembly.jar,然后放到上面指定的jar目录中去。

   然后运行flume

bin/flume-ng agent -n a1 -c conf/ -f conf/flume-push.conf -Dflume.root.logger=WARN,console
   然后在/home/hadoop/log/flume目录下新建log文件,运行spark的日志中出现如下:

在这里插入图片描述

三、poll方式

1、spark streaming程序

   这种方式是有spark主动去flume拉取数据,代码如下:

from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.flume import FlumeUtilsif __name__ == "__main__":spark = SparkSession\.builder\.appName("PythonWordCount") \.master("local[2]") \.getOrCreate()sc = spark.sparkContextssc = StreamingContext(sc, 5)addresses = [("localhost", 8888)]flumeStream = FlumeUtils.createPollingStream(ssc, addresses)line = flumeStream.map(lambda x: x[1])words = line.flatMap(lambda x: x.split(" "))datas = words.map(lambda x: (x, 1))result = datas.reduceByKey(lambda agg, obj: agg + obj)result.pprint()ssc.start()ssc.awaitTermination()

   如果是本地模式同样需要指定并行度,如果是在集群中运行,必须要求集群中可用core数大于1

2、flume conf文件

   在flume的conf目录下新建flume-poll.conf内容如下:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/hadoop/log/flume
a1.sources.r1.fileHeader = true# Describe the sink
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname = localhost
a1.sinks.k1.port = 8888# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
   由于是poll方式,需要的flume
bin/flume-ng agent -n a1 -c conf/ -f conf/flume-poll.conf -Dflume.root.logger=WARN,console
   启动spark程序
spark/bin/spark-submit  --driver-class-path /home/hadoop/spark/jars/*:/home/hadoop/jar/flume/* /tmp/pycharm_project_563/day5/FlumePollWordCount.py 
   同样在/home/hadoop/log/flume目录下新建log文件,将原先生成的COMPLETED文件删除,rm flume/aaa.txt.COMPLETED ,运行spark的日志中出现如下:

在这里插入图片描述

这篇关于Spark实战(五)spark streaming + flume(Python版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134333

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详