AI大模型编写多线程并发框架(六十五):发布和应用

2024-09-03 22:20

本文主要是介绍AI大模型编写多线程并发框架(六十五):发布和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


文章目录

  • 系列文章目录
  • 前言
    • 一、项目背景
    • 二、第十三轮对话-优化传参
    • 三、第十四轮对话-释放资源
    • 四、完善所有单元测试
    • 五、验证通过
    • 六、发布
    • 七、参考文章


前言

在这个充满技术创新的时代,AI大模型正成为开发者们的新宠。它们可以帮助我们完成从简单的问答到复杂的编程任务,所以AI编程将会是未来的主流方向,利用AI大模型的能力,本系列文章将介绍从零到一用AI大模型编写一个多线程并发框架。

一、项目背景

经过前面系列文章,我们基本完成这个多线程并发框架的搭建,目前只剩下一些小细节需要稍微处理一下,就基本可以发布上线。

本多线程框架使用示例如下:源码地址
1、引入依赖。

<dependency><groupId>io.github.vipjoey</groupId><artifactId>mmc-juc</artifactId><version>1.1</version>
</dependency>

2、使用示例。


// 创建一个MmcTaskExecutor实例,用于执行单次长耗时任务
// 下面是创建一个计算从1加到100的任务,总共100个任务,采用fork分治算法,阈值为10,总共任务为100 / 10 * 2 = 20个大任务,执行速率约为10/s
MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder().taskSource(IntStream.rangeClosed(1, 100).boxed().collect(Collectors.toList())) // 设置任务源.taskProcessor(x -> x.stream().reduce(0, Integer::sum)) // 设置任务处理方法.taskMerger(Integer::sum) // 设置结果处理方法(可选).threshold(10) // 设置任务处理阈值(可选).taskName("mmcTaskExample") // 设置任务名称.rateLimiter(10, 20)  // 设置速率限制,容量为10,每秒产生令牌为20,休眠时间为10ms.forkJoinPoolConcurrency(4) // 设置ForkJoinPool的并发度为4.build();// 同步执行并打印结果        
System.out.println("result: " + mmcTaskExecutor.execute());// 任务执行过程监控
[mmcTaskExample] Tasks submitted. Total tasks: 100
[mmcTaskExample] Task started. Completed tasks: 14, remaining tasks: 86
[mmcTaskExample] Task started. Completed tasks: 14, remaining tasks: 86
[mmcTaskExample] Task started. Completed tasks: 20, remaining tasks: 80
[mmcTaskExample] Task started. Completed tasks: 26, remaining tasks: 74
[mmcTaskExample] Task started. Completed tasks: 33, remaining tasks: 67
[mmcTaskExample] Task started. Completed tasks: 40, remaining tasks: 60
[mmcTaskExample] Task started. Completed tasks: 46, remaining tasks: 54
[mmcTaskExample] Task started. Completed tasks: 52, remaining tasks: 48
[mmcTaskExample] Task started. Completed tasks: 58, remaining tasks: 42
[mmcTaskExample] Task started. Completed tasks: 64, remaining tasks: 36
[mmcTaskExample] Task started. Completed tasks: 70, remaining tasks: 30
[mmcTaskExample] Task started. Completed tasks: 76, remaining tasks: 24
[mmcTaskExample] Task started. Completed tasks: 82, remaining tasks: 18
[mmcTaskExample] Task started. Completed tasks: 88, remaining tasks: 12
[mmcTaskExample] Task started. Completed tasks: 94, remaining tasks: 6
[mmcTaskExample] Task started. Completed tasks: 100, remaining tasks: 0
[mmcTaskExample] Tasks completed. Elapsed time: 1107 ms 
result: 5050

二、第十三轮对话-优化传参

1、上文提到,可以多次往MmcTaskExecutor提交任务,但明显每次构建MmcTask显得比较笨重,我们需要优化一下。
在这里插入图片描述

2、以下是AI的回复。

  • 【为了满足您的要求,我们将修改MmcTaskExecutor类的submitTask方法,以在提交任务时检查MmcTask的构造参数。如果MmcTask自身具有相应的参数,则使用它们,否则将MmcTaskExecutor的参数赋值给MmcTask。如果两者都为空,则抛出异常。在计算出最终的taskSource后,我们将实例化TaskRuntime。】
    // 检查并设置MmcTask的参数private void checkAndSet(MmcTask<T, R> mmcTask) {// 检查MmcTask的构造参数,如果为空,则使用MmcTaskExecutor的参数List<T> taskSource = mmcTask.getTaskSource() != null ? mmcTask.getTaskSource() : this.taskSource;MmcTaskProcessor<T, R> taskProcessor = mmcTask.getTaskProcessor() != null ? mmcTask.getTaskProcessor() : this.taskProcessor;MmcTaskMerger<R> taskMerger = mmcTask.getTaskMerger() != null ? mmcTask.getTaskMerger() : this.taskMerger;RateLimiter rateLimiter = mmcTask.getRateLimiter() != null ? mmcTask.getRateLimiter() : this.rateLimiter;MmcTaskListener taskListener = mmcTask.getTaskListener() != null ? mmcTask.getTaskListener() : this.taskListener;String taskName = mmcTask.getTaskName() != null ? mmcTask.getTaskName() : this.taskName;int threshold = mmcTask.getThreshold() > 0 ? mmcTask.getThreshold() : this.threshold;// 如果参数为空,则抛出异常Objects.requireNonNull(taskSource, "TaskSource cannot be null.");Objects.requireNonNull(taskProcessor, "TaskProcessor cannot be null.");Objects.requireNonNull(taskMerger, "TaskMerger cannot be null.");Objects.requireNonNull(rateLimiter, "RateLimiter cannot be null.");Objects.requireNonNull(taskListener, "TaskListener cannot be null.");Objects.requireNonNull(taskName, "TaskName cannot be null.");// 将最终参数赋值给MmcTaskTaskRuntime taskRuntime = new TaskRuntime(mmcTask.getTaskName(), mmcTask.getTaskSource().size());mmcTask.setTaskSource(taskSource);mmcTask.setTaskProcessor(taskProcessor);mmcTask.setTaskMerger(taskMerger);mmcTask.setRateLimiter(rateLimiter);mmcTask.setTaskListener(taskListener);mmcTask.setTaskName(taskName);mmcTask.setStart(0);mmcTask.setEnd(taskSource.size());mmcTask.setTaskRuntime(taskRuntime);mmcTask.setThreshold(threshold);}
  • 【接下来,我们需要修改MmcTaskExecutor类去初始化MmcTask。】
import java.util.List;
import java.util.concurrent.ForkJoinPool;public class MmcTaskExecutor<T, R> {// ...省略其他成员变量和方法// 同步执行并返回结果@Overridepublic R execute() {MmcTask<T, R> mmcTask = new MmcTask.Builder<T, R>().taskSource(taskSource).taskProcessor(taskProcessor).taskMerger(taskMerger).threshold(threshold).rateLimiter(rateLimiter).taskListener(taskListener).taskName(taskName).build();return execute(mmcTask);}// 同步执行并返回结果@Overridepublic R execute(MmcTask<T, R> mmcTask) {// 检查MmcTask的构造参数,如果为空,则使用MmcTaskExecutor的参数checkAndSet(mmcTask);long startTime = System.currentTimeMillis();mmcTask.setTaskRuntime(mmcTask.getTaskRuntime());// 调用onTasksSubmitted方法taskListener.onTasksSubmitted(mmcTask.getTaskRuntime());R result = forkJoinPool.invoke(mmcTask);// 调用onTasksCompleted方法long elapsedTime = System.currentTimeMillis() - startTime;taskListener.onTasksCompleted(mmcTask.getTaskRuntime(), elapsedTime);return result;}// 异步执行@Overridepublic void commit() {commit((result -> {}));}// 异步执行并获取结果@Overridepublic void commit(MmcTaskCallback<R> callback) {MmcTask<T, R> mmcTask = new MmcTask.Builder<T, R>().taskSource(taskSource).taskProcessor(taskProcessor).taskMerger(taskMerger).threshold(threshold).rateLimiter(rateLimiter).taskListener(taskListener).taskName(taskName).build();commit(mmcTask, callback);}// 异步执行并获取结果@Overridepublic void commit(MmcTask<T, R> mmcTask, MmcTaskCallback<R> callback) {// 检查MmcTask的构造参数,如果为空,则使用MmcTaskExecutor的参数checkAndSet(mmcTask);long startTime = System.currentTimeMillis();// 调用onTasksSubmitted方法taskListener.onTasksSubmitted(mmcTask.getTaskRuntime());forkJoinPool.submit(() -> {R result = mmcTask.invoke();// 调用onTasksCompleted方法long elapsedTime = System.currentTimeMillis() - startTime;taskListener.onTasksCompleted(mmcTask.getTaskRuntime(), elapsedTime);if (callback != null) {callback.onComplete(result);}});}
}

三、第十四轮对话-释放资源

1、增加关闭方法,释放所有资源。
在这里插入图片描述

2、以下是AI的回复。

  • 【为了满足您的要求,我们将为MmcTaskExecutor类添加一个名为shutdown的方法。该方法将关闭ForkJoinPool,以便不再接收新任务,并释放所有资源。】
import java.util.List;
import java.util.concurrent.ForkJoinPool;public class MmcTaskExecutor<T, R> {private ForkJoinPool forkJoinPool;// ...省略其他成员变量和方法// 关闭任务容器,不再接收任务,释放所有资源public void shutdown() {forkJoinPool.shutdown();}
}
  • 【现在,您可以通过调用MmcTaskExecutor的shutdown方法来关闭任务容器。这将导致不再接收新任务,并释放所有资源。注意,在调用shutdown方法后,您将无法再提交新任务。如果您需要再次提交任务,请重新创建一个新的MmcTaskExecutor实例。】

四、完善所有单元测试

1、完善所有异步和同步提交任务的单元测试。

package com.mmc.juc;import static org.junit.Assert.assertEquals;import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import org.junit.Test;public class MmcTaskExecutorTest {@Testpublic void testMmcTaskExecutor() {// 创建一个任务源,包含从1到100的整数List<Integer> taskSource = IntStream.rangeClosed(1, 100).boxed().collect(Collectors.toList());// 创建一个任务处理器,将每个整数相加MmcTaskProcessor<Integer, Integer> taskProcessor = (integer) -> integer.stream().mapToInt(Integer::intValue).sum();// 创建一个任务合并器,将所有整数的和合并MmcTaskMerger<Integer> taskMerger = Integer::sum;// 创建一个任务监听器,打印任务执行过程中的相关信息MmcTaskListener taskListener = new DefaultMmcTaskListener();// 创建一个MmcTaskExecutor实例MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder().taskSource(taskSource).taskProcessor(taskProcessor).taskMerger(taskMerger).taskListener(taskListener).rateLimiter(10, 10) // 每秒处理10个任务.taskName("testMmcTaskExecutor").build();// 执行任务并获取结果Integer result = mmcTaskExecutor.execute();// 验证结果是否正确(1到100的和等于5050)assertEquals(5050, result.intValue());}@Testpublic void testMmcTaskExecutorWithTask() {// 创建一个任务源,包含从1到100的整数List<Integer> taskSource = IntStream.rangeClosed(1, 100).boxed().collect(Collectors.toList());// 创建一个MmcTaskExecutor实例MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder().taskProcessor(x -> x.stream().reduce(0, Integer::sum)).taskMerger(Integer::sum).rateLimiter(new TokenBucket(10, 20)).taskListener(new DefaultMmcTaskListener()).build();Integer r = mmcTaskExecutor.execute(MmcTask.<Integer, Integer>builder().taskSource(taskSource).taskName("testMmcTaskExecutorWithTask").build());System.out.println("result: " + r);}@Testpublic void testCommit() throws InterruptedException {// 创建一个任务源,包含从1到100的整数List<Integer> taskSource = IntStream.rangeClosed(1, 100).boxed().collect(Collectors.toList());// 创建一个任务处理器,将每个整数相加MmcTaskProcessor<Integer, Integer> taskProcessor = (integer) -> integer.stream().mapToInt(Integer::intValue).sum();// 创建一个任务合并器,将所有整数的和合并MmcTaskMerger<Integer> taskMerger = Integer::sum;// 创建一个任务监听器,打印任务执行过程中的相关信息MmcTaskListener taskListener = new DefaultMmcTaskListener();// 创建一个MmcTaskExecutor实例MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder().taskSource(taskSource).taskProcessor(taskProcessor).taskMerger(taskMerger).taskListener(taskListener).rateLimiter(10, 10) // 每秒处理10个任务.taskName("testCommit").build();mmcTaskExecutor.commit();TimeUnit.SECONDS.sleep(3); // 等待异步任务完成}@Testpublic void testCommitWithCallback() throws InterruptedException {// 创建一个任务源,包含从1到100的整数List<Integer> taskSource = IntStream.rangeClosed(1, 100).boxed().collect(Collectors.toList());// 创建一个任务处理器,将每个整数相加MmcTaskProcessor<Integer, Integer> taskProcessor = (integer) -> integer.stream().mapToInt(Integer::intValue).sum();// 创建一个任务合并器,将所有整数的和合并MmcTaskMerger<Integer> taskMerger = Integer::sum;// 创建一个任务监听器,打印任务执行过程中的相关信息MmcTaskListener taskListener = new DefaultMmcTaskListener();// 创建一个MmcTaskExecutor实例MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder().taskSource(taskSource).taskProcessor(taskProcessor).taskMerger(taskMerger).taskListener(taskListener).rateLimiter(10, 10) // 每秒处理10个任务.taskName("testCommitWithCallback").build();mmcTaskExecutor.commit(result -> {assertEquals(5050, result.intValue());});}@Testpublic void testCommitWithCustomMmcTaskAndCallback() throws InterruptedException {// 创建一个任务源,包含从1到100的整数List<Integer> taskSource = IntStream.rangeClosed(1, 100).boxed().collect(Collectors.toList());// 创建一个MmcTaskExecutor实例MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder().taskProcessor(x -> x.stream().reduce(0, Integer::sum)).taskMerger(Integer::sum).taskListener(new DefaultMmcTaskListener()).build();mmcTaskExecutor.commit(MmcTask.<Integer, Integer>builder().taskName("testCommitWithCustomMmcTaskAndCallback").rateLimiter(new TokenBucket(20, 20)).taskSource(taskSource).build(), result -> {assertEquals(5050, result.intValue());System.out.println("result: " + result);});}
}

五、验证通过

1、我们运行一下单元测试,看看效果。
在这里插入图片描述
很完美!整个框架运行正常!

六、发布

参考搭建大型分布式服务(四十三)SpringBoot 无代码侵入实现多Kafka数据源发布到Maven中央仓库:让世界看到你的作品! 这篇文章,将这个多线程并发框架发布到中央仓库。

<dependency><groupId>io.github.vipjoey</groupId><artifactId>mmc-juc</artifactId><version>1.1</version>
</dependency>

可能,有小伙伴有疑问,这个多线程框架不会只能用来计算1到100这些简单的任务吧?当然不是,下一篇,我们将整合到kafka框架,让它的执行速度飞起来!
《搭建大型分布式服务(四十四)SpringBoot 无代码侵入实现多Kafka数据源:单分区提升至十万级消费速度!》

七、参考文章

  • 《AI大模型编写多线程并发框架(六十一):从零开始搭建框架》
  • 《AI大模型编写多线程并发框架(六十二):限流和并发度优化》
  • 《AI大模型编写多线程并发框架(六十三):监听器优化·上》
  • 《AI大模型编写多线程并发框架(六十四):监听器优化·下》
  • 《AI大模型编写多线程并发框架(六十五):发布和应用》

加我加群(备注csdn)一起交流学习!更多干货下载、项目源码和大厂内推等着你

这篇关于AI大模型编写多线程并发框架(六十五):发布和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134205

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

修复已被利用的高危漏洞! macOS Sequoia 15.6.1发布

《修复已被利用的高危漏洞!macOSSequoia15.6.1发布》苹果公司于今日发布了macOSSequoia15.6.1更新,这是去年9月推出的macOSSequoia操作... MACOS Sequoia 15.6.1 正式发布!此次更新修复了一个已被黑客利用的严重安全漏洞,并解决了部分中文用户反馈的

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi