本文主要是介绍TensorFlow程序分析(profile)实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
导入必要的包
import os
import tempfileimport tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
建立模型
batch_size = 100# placeholder
inputs = tf.placeholder(tf.float32, [batch_size, 784])
targets = tf.placeholder(tf.float32, [batch_size, 10])# model
fc_1_out = tf.layers.dense(inputs, 500, activation=tf.nn.sigmoid)
fc_2_out = tf.layers.dense(fc_1_out, 784, activation=tf.nn.sigmoid)
logits = tf.layers.dense(fc_2_out, 10, activation=None)# loss + train_op
loss = tf.losses.softmax_cross_entropy(onehot_labels=targets, logits=logits)
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
加载数据,并获取程序运行数据
# load data
mnist_save_dir = os.path.join(tempfile.gettempdir(), 'MNIST_data')
mnist = input_data.read_data_sets(mnist_save_dir, one_hot=True)# get tracing data
with tf.Session() as sess:sess.run(tf.global_variables_initializer())# 创建Profiler实例作为记录、处理、显示数据的主体profiler = tf.profiler.Profiler(graph=sess.graph)# 设置trace_level,这样才能搜集到包含GPU硬件在内的最全统计数据run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)# 创建RunMetadata实例,用于在每次sess.run时汇总统计数据run_metadata = tf.RunMetadata()for i in range(10):batch_input, batch_target = mnist.train.next_batch(batch_size)feed_dict = {inputs: batch_input,targets: batch_target}_ = sess.run(train_op,feed_dict=feed_dict,options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),run_metadata=run_metadata)# 将当前step的统计数据添加到Profiler实例中profiler.add_step(step=i, run_meta=run_metadata)
统计模型的参数量
## 统计参数量
opts = tf.profiler.ProfileOptionBuilder.trainable_variables_parameter()
param_stats = profiler.profile_name_scope(options=opts)
# 总参数量
print('总参数:', param_stats.total_parameters)
# 各scope参数量
for x in param_stats.children:print(x.name, 'scope参数:', x.total_parameters)
统计模型的浮点运算数
# 统计运算量
opts = tf.profiler.ProfileOptionBuilder.float_operation()
float_stats = profiler.profile_operations(opts)
# 总参数量
print('总浮点运算数:', float_stats.total_float_ops)
统计模型的内存、耗时情况
# 统计模型内存和耗时情况
builder = tf.profiler.ProfileOptionBuilder
opts = builder(builder.time_and_memory())
#opts.with_step(1)
opts.with_timeline_output('timeline.json')
opts = opts.build()#profiler.profile_name_scope(opts) # 只能保存单step的timeline
profiler.profile_graph(opts) # 保存各个step的timeline
给出使用profile工具给出建议
opts = {'AcceleratorUtilizationChecker': {},'ExpensiveOperationChecker': {},'JobChecker': {},'OperationChecker': {}}
profiler.advise(opts)
这篇关于TensorFlow程序分析(profile)实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!