求教0基础入门大模型的学习路线?LLM大模型学习教程

2024-09-03 11:12

本文主要是介绍求教0基础入门大模型的学习路线?LLM大模型学习教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0基础入门大模型,transformer、bert这些是要学的,但是你的第一口不一定从这里咬下去。

真的没有必要一上来就把时间精力全部投入到复杂的理论、各种晦涩的数学公式还有编程语言上,这样不仅容易让你气馁,而且特别容易磨光热情。

当我们认识复杂新事物时,最舒适的路径应当是:感性认识现象->理解本质和原理->将所学知识用于解释新现象并指导实践。

所以我给出的这条路径是:先学会如何使用大模型,然后了解其背后的原理,最后探索如何将其应用于实际问题。

Prompt工程:作为一个普通人,把大模型用起来

如果说大模型像一个矿藏,那么prompt就像是一把铲子,从哪个角度挖,如何挖,决定了你能开采出什么内容。


一个清晰有效的prompt包含角色、任务目标、上下文、输出要求、限定条件、理想示例等一系列内容,只有把prompt设计好了,大模型才有可能发挥出理想的效果。

 AI编程:作为一个程序员,把大模型用起来

 

学会使用Copilot、通义灵码之类的AI编程工具来提升编码效率。现阶段AI辅助编程在代码补全以及注释生成方面表现还不错,因此需要你来把架子搭好、把模块分好。这样无形中还能提高你的架构能力。

API调用:作为一个大模型套壳程序员,玩一下

掌握如何调用市面上常见的大模型API,结合自己的想法实现具体的小任务,这对初学者来说是一个实际操作的好机会。


 

这时候你就获得了实践经验和对AI的直观认识。接下来就可以进入更深一层的大模型应用技术了。

大模型应用开发:作为一个大模型应用开发程序员,把大模型用起来

在工具方面,需要学习如LangChain这样的开发库,以及如LlamaIndex这样的数据索引和检索工具。

 

方向方面:

RAG(Retrieval-Augmented Generation检索增强生成):

RAG 是 LLM 落地最早的一个方向之一。简单来说就是搭建一个私有的知识库,将你的私有知识数据存储在向量数据库里,然后对话的过程中按照某些策略去检索这些知识,然后提供给大模型进行参考。

逻辑流程:数据提取->embedding(向量化)->索引创建->检索->排序->LLM生成。


 

这部分内容技术细节很多,也非常有趣,很有搞头。

Agent

大模型应用的风口方向,非常香!简单来说就是给大模型大脑制定一个策略,让它可以自主地去感知环境并且进行任务执行。

典型的AI agent分为Memory(记忆)、Tools(外部工具) 、Planning(计划) 和Action(行动)四个模块。

 

Agent相关的开源项目以及产品非常多,可以边研究边学边做。

至此,应用方面的板块内容就介绍完了。注意这个路径虽然更适合0基础入门,但是并不代表轻松简单。出来混,总要还的,因为我们前期跳过了很多基础知识,所以意味着越往后学,越需要回填大量前置内容,比如:

  • 掌握 Python 语言
  • 掌握向量数据库
  • 熟悉常用的库和工具,如 NumPy、Pandas、TensorFlow、PyTorch 等
  • 具备 NLP 相关的基础知识,包括文本预处理、分词、词性标注、命名实体识别、词向量表示等
  • Transformer 模型的结构和原理、基于注意力机制的自然语言处理技术等
  • BERT、BART、T5等经典的模型
  • 数学基础知识


 

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

这篇关于求教0基础入门大模型的学习路线?LLM大模型学习教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132805

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了