《OpenCV计算机视觉》—— 图像形态学(腐蚀、膨胀等)

2024-09-03 02:36

本文主要是介绍《OpenCV计算机视觉》—— 图像形态学(腐蚀、膨胀等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、图像形态学基本概念
  • 二、基本运算
    • 1.简单介绍
    • 2.代码实现
  • 三、高级运算
    • 1.简单介绍
    • 2.代码实现

一、图像形态学基本概念

  • 图像形态学是图像处理科学的一个独立分支,它基于集合论和数学形态学的理论,专门用于分析和处理图像中的形状和结构
  • 图像形态学处理主要关注的是二值图像(黑白图像或是灰度图),其基本思想是用具有一定形态特征的结构元素去量度和提取图像中的对应形状,以实现图像分析和识别的目的。与传统的基于线性理论的空域或频域图像处理技术相比,图像形态学具有不模糊图像边界和细节、对噪声不敏感、提取的图像边缘平滑、骨架较连续、易于并行处理等特点

二、基本运算

1.简单介绍

  • 图像形态学的基本运算主要包括四种:膨胀、腐蚀、开运算和闭运算。

    • 腐蚀(Erosion):通过结构元素与图像进行卷积,将结构元素包含的图像区域缩小,以去除图像中小的细节和噪声。这一操作可以用于细化边缘、分离紧密相连的物体等。
    • 膨胀(Dilation):与腐蚀相反,膨胀操作通过结构元素与图像进行卷积,将结构元素包含的图像区域扩大,以填充图像中的空洞和连接图像中的断线。这有助于填充小的空洞、连接断裂的物体等。
    • 开运算(Opening):先进行腐蚀操作,再进行膨胀操作的组合。这种操作可以去除图像中的小噪声和细小物体,同时保留图像中的主要结构。
    • 闭运算(Closing):与开运算相反,闭运算是先进行膨胀操作,再进行腐蚀操作的组合。它可以用于填充图像中的小空洞,连接图像中的断裂结构,并平滑图像边缘。

2.代码实现

  • 基本运算代码实现

    import cv2
    import numpy as np# 读取图像(这里所给的图片已经是黑白图,直接读取,不需要进行二值化操作)
    image = cv2.imread('zhiwen.png')# 定义结构元素
    # 这里使用3x3的正方形结构元素
    kernel = np.ones((3, 3), np.uint8)# 腐蚀操作 cv2.erode()
    eroded_image = cv2.erode(image, kernel, iterations=1)  # iterations 为迭代次数(执行了多少次操作)# 膨胀操作 cv2.dilate()
    dilated_image = cv2.dilate(image, kernel, iterations=1)# cv2.morphologyEx() 函数用于执行更复杂的形态学操作,如开运算和闭运算
    # 开运算:先腐蚀后膨胀  cv2.MORPH_OPEN()
    opening_image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)# 闭运算:先膨胀后腐蚀  cv2.MORPH_CLOSE()
    closing_image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)# 显示结果
    cv2.imshow('Original Image', image)
    cv2.imshow('Eroded Image', eroded_image)
    cv2.imshow('Dilated Image', dilated_image)
    cv2.imshow('Opening Image', opening_image)
    cv2.imshow('Closing Image', closing_image)# 等待任意键按下后关闭所有窗口
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
  • 原图如下
    在这里插入图片描述

  • 腐蚀图(左)与膨胀图(右)
    在这里插入图片描述

  • 开运算图(左)与闭运算图(右)
    在这里插入图片描述

三、高级运算

1.简单介绍

  • 基于上述基本运算,还可以推导出多种高级形态学运算方法,如形态学梯度、顶帽变换、底帽变换等。

    • 形态学梯度(Morphological Gradient):通过膨胀和腐蚀操作的差异,可以得到图像边缘的强度信息,有助于边缘检测
    • 顶帽变换:先将图像进行开运算(先腐蚀后膨胀),然后将原始图像与开运算结果相减,作用与应用如下:
      • 顶帽变换能够突出原始图像中比周围区域更明亮的小尺度细节或亮度变化。
      • 常用于增强图像的局部对比度,以突出微小的细节,如血管、细胞核等。
      • 在医学图像分析(如血管和细胞核分割)以及纹理分析中发挥重要作用。
    • 黑帽变换:先将图像进行闭运算(先膨胀后腐蚀),然后用闭运算结果减去原始图像 ,作用与应用如下:
      • 黑帽变换能够突出原始图像中比周围区域更暗的小尺度细节或亮度变化。
      • 常用于检测图像中的小暗斑点或小暗物体,以及用于凸显亮背景上的暗物体。
      • 在图像增强、缺陷检测、文字识别等领域有广泛应用。

2.代码实现

  • 形态学梯度运算代码实现

    """梯度运算"""
    # 读取图片
    wenzi = cv2.imread('wenzi.png')# 定义结构元素
    # 这里使用2x2的正方形结构元素
    kernel = np.ones((2, 2), np.uint8)# 膨胀
    pz_wenzi = cv2.dilate(wenzi, kernel, iterations=2)
    # 腐蚀
    fs_wenzi = cv2.erode(wenzi, kernel, iterations=2)# 膨胀 - 腐蚀  cv2.MORPH_GRADIENT
    TiDu_wenzi = cv2.morphologyEx(wenzi, cv2.MORPH_GRADIENT, kernel)# 显示图片
    cv2.imshow('yuantu_wenzi', wenzi)
    cv2.imshow('pz_wenzi', pz_wenzi)
    cv2.imshow('fs_wenzi', fs_wenzi)
    cv2.imshow('TiDu_wenzi', TiDu_wenzi)# 等待任意键按下后关闭所有窗口
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
  • 原图
    在这里插入图片描述

  • 膨胀(左)、腐蚀(中)、形态学梯度运算(膨胀 - 腐蚀)(右)
    在这里插入图片描述

  • 顶帽和黑帽代码实现

    """顶帽和黑帽"""
    # 顶帽 = 原始图片 - 开运算结果(先腐蚀后膨胀)
    # 黑帽 = 原始图片 - 闭运算结果(先膨胀后腐蚀)# 读取图片
    sun = cv2.imread('sun.png')# 定义结构元素
    # 这里使用3x3的正方形结构元素
    kernel = np.ones((3, 3), np.uint8)# 开运算
    sun_open = cv2.morphologyEx(sun, cv2.MORPH_OPEN, kernel)
    # 闭运算
    sun_close = cv2.morphologyEx(sun, cv2.MORPH_CLOSE, kernel)# 顶帽  cv2.MORPH_TOPHAT
    tophat = cv2.morphologyEx(sun, cv2.MORPH_TOPHAT, kernel)# 黑帽  cv2.MORPH_BLACKHAT
    blackhat = cv2.morphologyEx(sun, cv2.MORPH_BLACKHAT, kernel)# 显示图片
    cv2.imshow('sun_yuantu', sun)
    cv2.imshow('sun_open', sun_open)
    cv2.imshow('sun_close', sun_close)
    cv2.imshow('TOPHAT', tophat)
    cv2.imshow('blackhat', blackhat)# 等待任意键按下后关闭所有窗口
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
  • 原图
    在这里插入图片描述

  • 开运算(左)与顶帽(右)
    在这里插入图片描述

  • 闭运算(左)与黑帽(右)
    在这里插入图片描述

这篇关于《OpenCV计算机视觉》—— 图像形态学(腐蚀、膨胀等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131780

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

计算机视觉工程师所需的基本技能

一、编程技能 熟练掌握编程语言 Python:在计算机视觉领域广泛应用,有丰富的库如 OpenCV、TensorFlow、PyTorch 等,方便进行算法实现和模型开发。 C++:运行效率高,适用于对性能要求严格的计算机视觉应用。 数据结构与算法 掌握常见的数据结构(如数组、链表、栈、队列、树、图等)和算法(如排序、搜索、动态规划等),能够优化代码性能,提高算法效率。 二、数学基础

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的:

Verybot之OpenCV应用二:霍夫变换查找圆

其实我是想通过这个程序来测试一下,OpenCV在Verybot上跑得怎么样,霍夫变换的原理就不多说了,下面是程序: #include "cv.h"#include "highgui.h"#include "stdio.h"int main(int argc, char** argv){cvNamedWindow("vedio",0);CvCapture* capture;i