【python因果推断库2】使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析

本文主要是介绍【python因果推断库2】使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析

导入数据

分析

使用 PyMC 模型建模银行业数据集

导入数据

 分析 1 - 经典 2×2 差分-in-差分 (DiD)

分析 2 - 具有多个干预前后观测值的差分-in-差分 (DiD) 分析 


 使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析

import arviz as azimport causalpy as cp
%load_ext autoreload
%autoreload 2
%config InlineBackend.figure_format = 'retina'
seed = 42

导入数据

df = cp.load_data("did")
df.head()

分析

`random_seed` 这个关键词参数对于 PyMC 采样器来说并不是必需的。我们在这里使用它是为了确保结果是可以重现的。

result = cp.pymc_experiments.DifferenceInDifferences(df,formula="y ~ 1 + group*post_treatment",time_variable_name="t",group_variable_name="group",model=cp.pymc_models.LinearRegression(sample_kwargs={"random_seed": seed}),
)
fig, ax = result.plot()

result.summary()
===========================Difference in Differences============================
Formula: y ~ 1 + group*post_treatmentResults:
Causal impact = 0.5, $CI_{94\%}$[0.4, 0.6]
Model coefficients:Intercept                   	1.1, 94% HDI [1, 1.1]post_treatment[T.True]      	0.99, 94% HDI [0.92, 1.1]group                       	0.16, 94% HDI [0.094, 0.23]group:post_treatment[T.True]	0.5, 94% HDI [0.4, 0.6]sigma                       	0.082, 94% HDI [0.066, 0.1]
ax = az.plot_posterior(result.causal_impact, ref_val=0)
ax.set(title="Posterior estimate of causal impact");

使用 PyMC 模型建模银行业数据集

本笔记本分析了来自 Richardson (2009) 的历史银行业关闭数据,并将其作为差分-in-差分分析的一个案例研究,该案例研究来源于优秀的书籍《Mastering Metrics》(Angrist 和 Pischke, 2014)。在这里,我们复制了这项分析,但是使用了贝叶斯推断的方法。

import arviz as az
import pandas as pdimport causalpy as cp
%load_ext autoreload
%autoreload 2
%config InlineBackend.figure_format = 'retina'
seed = 42

导入数据

原始数据集包含一个日期列,这个列中的数字无法直接解读——对于我们分析而言只需要年份列。数据集中还有 `bib6`, `bio6`, `bib8`, `bio8` 这几列。我们知道数字 6 和 8 分别代表第 6 和第 8 联邦储备区。我假设 `bib` 表示“营业中的银行”,所以我们保留这些列。数据是以天为单位的,但我们将把它转换成年为单位。从 Angrist 和 Pischke (2014) 一书中的图 5.2 来看,他们似乎展示了每年营业银行数量的中位数。现在让我们加载数据并执行这些步骤。

df = (cp.load_data("banks")# just keep columns we want.filter(items=["bib6", "bib8", "year"])# rename to meaningful variables.rename(columns={"bib6": "Sixth District", "bib8": "Eighth District"})# reduce from daily resolution to examine median banks open by year.groupby("year").median()
)treatment_time = 1930.5# set treatment time to zero
df.index = df.index - treatment_time
treatment_time = 0
ax = df[["Sixth District", "Eighth District"]].plot(style="o-")
ax.set(ylabel="Number of banks in business")
ax.axvline(x=treatment_time, c="r", lw=3, label="intervention")
ax.legend();

让我们可视化我们现在得到的数据。这与 Angrist 和 Pischke (2014) 一书中的图 5.2 完全匹配。 

只需几个最后的数据处理步骤,就可以使数据适合于分析。我们将把数据从宽格式转换为长格式。然后我们将添加一个新的列 `treated`,用来指示已经实施处理的观测值。 

df.reset_index(level=0, inplace=True)
df_long = pd.melt(df,id_vars=["year"],value_vars=["Sixth District", "Eighth District"],var_name="district",value_name="bib",
).sort_values("year")# We also need to create a column called `unit` which labels each distinct
# unit. In our case we just have two treatment units (each district). So
# we can build a `unit` column from `district`.
df_long["unit"] = df_long["district"]# We also need to create a `post_treatment` column to define times after
# the intervention.
df_long["post_treatment"] = df_long.year >= treatment_time
df_long# Dummy coding for district
df_long = df_long.replace({"district": {"Sixth District": 1, "Eighth District": 0}})
df_long

 分析 1 - 经典 2×2 差分-in-差分 (DiD)

首先,我们只分析 1930 年和 1931 年的数据。这样我们就只有一个干预前的测量和一个干预后的测量。

我们将使用公式:`bib ~ 1 + district * post_treatment`,这等价于以下的期望值模型:\begin{aligned}\mu_{i}&=\beta_0\\&+\beta_d\cdot district_i\\&+\beta_p\cdot post\textit{ treatment}_i\\&+\beta_\Delta\cdot district_i\cdot\textit{post treatment}_i\end{aligned}

让我们逐一理解这些内容:

- \mu_{i} 是第 i个观测值的结果(营业中的银行数量)的期望值。
- \beta_{0} 是一个截距项,用来捕捉对照组在干预前营业中银行的基础数量。
- `district` 是一个虚拟变量,所以 \beta_{d} 将代表地区的主要效应,即相对于对照组,处理组的任何偏移量。
- `post_treatment` 也是一个虚拟变量,用来捕捉无论是否接受处理,在处理时间之后结果的任何变化。
- 两个虚拟变量的交互作用 `district:post_treatment` 只会在干预后处理组中取值为 1。因此,\beta_{\Delta} 将代表我们估计的因果效应。

result1 = cp.pymc_experiments.DifferenceInDifferences(df_long[df_long.year.isin([-0.5, 0.5])],formula="bib ~ 1 + district * post_treatment",time_variable_name="post_treatment",group_variable_name="district",model=cp.pymc_models.LinearRegression(sample_kwargs={"target_accept": 0.98, "random_seed": seed}),
)

这里我们遇到了一些发散的情况,这是不好的迹象。这很可能与我们只有4个数据点却有5个参数有关。这对于贝叶斯分析来说并不总是致命的(因为我们有先验分布),不过当我们遇到发散的样本时,这确实是一个警告信号。

使用下面的代码,我们可以看到我们遇到了经典的“漏斗问题”,因为当采样器探索测量误差(即 σ 参数)接近零的值时出现了发散。

az.plot_pair(result1.idata, var_names="~mu", divergences=True);

为了进行“正规”的工作,我们需要解决这些问题以避免出现发散情况,例如,可以尝试探索不同的 σ 参数的先验分布。

fig, ax = result1.plot(round_to=3)

result1.summary()
===========================Difference in Differences============================
Formula: bib ~ 1 + district * post_treatmentResults:
Causal impact = 19, $CI_{94\%}$[15, 22]
Model coefficients:Intercept                      	165, 94% HDI [163, 167]post_treatment[T.True]         	-33, 94% HDI [-36, -30]district                       	-30, 94% HDI [-32, -27]district:post_treatment[T.True]	19, 94% HDI [15, 22]sigma                          	0.84, 94% HDI [0.085, 2.2]
ax = az.plot_posterior(result1.causal_impact, ref_val=0, round_to=3)
ax.set(title="Posterior estimate of causal impact");

分析 2 - 具有多个干预前后观测值的差分-in-差分 (DiD) 分析 

现在我们将对整个数据集进行差分-in-差分分析。这种方法与{术语}CITS(比较性中断时间序列)具有相似之处,其中涉及单个对照组随时间的变化。虽然这种区分稍微有些武断,但我们根据是否有足够的时间序列数据让CITS能够捕捉时间序列模式来区别这两种技术。

我们将使用公式:`bib ~ 1 + year + district*post_treatment`,这等价于以下的期望值模型:

\begin{aligned} \mu_{i}=& =\beta_{0} \\ &+\beta_y\cdot year_i \\ &+\beta_d\cdot district_i \\ &+\beta_p\cdot post treatment_i \\ &+\beta_\Delta\cdot district_i\cdot post treatment_i \end{aligned}

与上面的经典 2×2 差分-in-差分模型相比,这里唯一的改变是增加了年份的主要效应。因为年份是数值编码的(而不是分类编码),它可以捕捉结果变量随时间发生的任何线性变化。

result2 = cp.pymc_experiments.DifferenceInDifferences(df_long,formula="bib ~ 1 + year + district*post_treatment",time_variable_name="year",group_variable_name="district",model=cp.pymc_models.LinearRegression(sample_kwargs={"target_accept": 0.95, "random_seed": seed}),
)
fig, ax = result2.plot(round_to=3)

result2.summary()
===========================Difference in Differences============================
Formula: bib ~ 1 + year + district*post_treatmentResults:
Causal impact = 20, $CI_{94\%}$[15, 26]
Model coefficients:Intercept                      	160, 94% HDI [157, 164]post_treatment[T.True]         	-28, 94% HDI [-33, -22]year                           	-7.1, 94% HDI [-8.5, -5.7]district                       	-29, 94% HDI [-34, -24]district:post_treatment[T.True]	20, 94% HDI [15, 26]sigma                          	2.4, 94% HDI [1.7, 3.2]

通过观察交互项,它可以捕捉干预措施的因果影响,我们可以看出干预似乎挽救了大约20家银行。尽管对此存在一定的不确定性,但我们可以在下方看到这一影响的完整后验估计。

ax = az.plot_posterior(result2.causal_impact, ref_val=0, round_to=3)
ax.set(title="Posterior estimate of causal impact");

这篇关于【python因果推断库2】使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131524

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in