数据治理学习笔记(二):在数仓建模过程中,数据治理要怎么做

2024-09-02 21:36

本文主要是介绍数据治理学习笔记(二):在数仓建模过程中,数据治理要怎么做,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

之前写了点数据治理的大概定义,中间的工作中也接触到了一部分的数据治理(大概是)工作,最近在复习数仓建模的一些东西,正好结合做个整理备忘,按我自己理解的方式去看数据治理。

背景

数仓在大多数场景里都有运用到,这里按数仓分层的逻辑来讲点数据治理的东西。

叠甲

可能有些地方我理解有问题,不在数据治理工作中,就当是自己的工作总结吧,有人提出大的问题,我再改改。小问题就凑合看看,当一个参考。

1.ODS/DIM 层

原始数据层: 大部分做的是直接获取到各数据来源的基础数据,获取和存储也有很多方式,不做单独的说明。在大多数情况都是要求保持数据不变动,所以在治理这方面,主要在于数据提供方。后面数据价值的成功发掘必须依托于高质量的数据,所以保证ODS层的数据质量是很有必要的。
维度层: 两个层是最贴近数据来源的地方,就和ODS层放在一起讲,基本是用更符合业务逻辑的维度表去规范ODS层的数据质量。例如:偏移量、非空检查、值域检查、规范性检查、重复性检查、关联关系检查、离群值检查、波动检查等等。需要注意的是,优秀的数据质量模型的设计必须依赖于对业务的深刻理解。
实践中:平时经常遇到本来设计的要有数据,要和其他地方有联系的数据,结果不是缺就是和设计的有出入,这直接导致一个问题,要两方来适配。最有效的方式就是反馈给业务方,整体修改,保证数据提供有效,平时开发能严格按设计来做。理论上虽然是这样,但是在业务方来看“系统能正常跑就行” ==。
好吧,在大数据这边做处理的话,目前来说也只是做些缝缝补补,

  1. 做数据的拉取时,加一层判断,初步做一些数据量变化,和数据合理性的判断。
  2. 数据归集,做一定的逻辑分析,可以更明确的看到业务中的问题,反馈给业务方,保证数据的可用性,这个也算大数据这边的一个功能吧,只能看到啥数据有问题让他们改。
  3. 再有就是数据清洗的一些工作,实在无法修改的,不影响下游的数据,可以做一定的清洗,保证数据质量。

其实能做的还是反馈给上游,保证质量,在抽取之后做的处理都是被动的,也有失原有的数据特性。

2.DWD层

数据仓库明细层(事实层) 用于存储经过清洗和加工的明细数据。作用将ODS层数据根据业务主体要求,将ODS数据抽取到DW层,在保证和ods层颗粒度一致的情况,形成一份最详细的明细数据,同时此层还可以进行一定维度退化的方案。最终优化出数据质量更高的信息,形成一个既定的事实,不允许修改。

  1. 合理的表设计:在明细表以上都是可以按已有逻辑,自己设计的,在这里就可以做一些表层面的治理方法,覆盖最大化,有效数据利用明确化,还有后面的血缘也是要考虑进去。可以根据经验和实际业务来规范表设计方案,毕竟符合自己业务的才是好用的。
  2. 血缘追踪:数据被业务场景使用时,发现数据错误,数据治理团队需要快速定位数据来源,修复数据错误。那么数据治理需要知道业务团队的数据来自于哪个核心库,核心库的数据又来自于哪个数据源头。血缘在每一层都该做好设计,明细层的特性就是不可修改的事实,放在这层讲,其实是贯穿整个数仓层的。在元数据和数据资源清单之间建立关联关系,且团队使用的数据项由元数据组合配置而来,这样,就建立了数据使用场景与数据源头之间的血缘关系。 做好需要和数据资产的整理,在后期修改和使用方面就能省很多时间。

3.DWS层

轻度汇总层:对一些比较常用的数据进行一步汇总,统一粒度,比如数量,金额等,为上层的数据应用提供基础数据。
这里大多是做过度用,承上启下。做好数据清洗,血缘追踪能提高这里的可用性。

  1. 这里的数据治理要按主要业务来规范数据,保证数据可用,做好承上启下。
  2. 对数据敏感,聚合出更有效的数据出来,为业务分析师和决策者提供可直接使用的数据,生成报表和图表,以支持业务决策。

4.ADS层

应用层:单在数据库数仓里,主要是按具体业务逻辑来做的一些贴近接口的数据处理。之前做的数据,转化成可用于业务决策和数据分析的可用数据。然后从中抽离出各种“接口”,提供给不同的数据使用方,最终实现数据价值。

  1. 这层做的基本不算是数据治理,主要是按产品需求来做对应的开发,逻辑缜密感觉算一个吧。保证自己的代码,算法不背锅,前面的数据处理没问题,有啥都可以甩给业务数据提供方。
  2. 还有一个数据权限问题,保证哪些用户对特定数据的访问权。做好数据脱敏,管理规范等。

小结

上面说的很多数据治理都是贯穿整个数仓的,哪一步没有做好,后面回头排查都得再捋一遍,很多时候的开发过程就是一次次试错,没法保证绝对的准确。所以重点还是细心吧,代码一定要逻辑缜密,注释该写就写的详细,第二天就忘的很常见。找资料时还看到一些“合规性管理”,“数据生命周期管理”,“人员治理意识提升”之类的,这些暂时没怎么接触到,感兴趣的可以按这些去搜搜看。

这篇关于数据治理学习笔记(二):在数仓建模过程中,数据治理要怎么做的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131132

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d