OBCE 第三章实验 内存管理手动实践 深入了解Queuing(buffer)表

本文主要是介绍OBCE 第三章实验 内存管理手动实践 深入了解Queuing(buffer)表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验环境:oceanbase 企业版V3 1-1-1 架构。

1.查看当前资源情况

select unit_config_id,name,max_cpu,min_cpu,round(max_memory/1024/1024/1024) max_mem_gb, round(min_memory/1024/1024/1024) min_mem_gb, round(max_disk_size/1024/1024/1024) max_disk_size_gb  from __all_unit_config  order by unit_config_id;

2.黑屏创建oracle租户

(1)创建unit

CREATE RESOURCE UNIT unit1 MAX_CPU 3, MAX_MEMORY '6G', MAX_IOPS 10000,MAX_DISK_SIZE '500G', MAX_SESSION_NUM 1000, MIN_CPU=3, MIN_MEMORY='6G',MIN_IOPS=1000;

(2)创建资源池

create resource pool ora_pool_test unit = 'unit1',unit_num = 1;

(3)创建oracle租户

create tenant ob_ora resource_pool_list=('ora_pool_test'), primary_zone='RANDOM',comment 'oracle tenant/instance', charset='utf8' set ob_tcp_invited_nodes='%', ob_compatibility_mode='oracle';

这样我们就有了租户资源规格大小为 3C6G 的oracle类型租户。

开始实验:
 

步骤 1 登录 Oracle 租户的 sys 用户(注意不是 sys 租户),查看修改前参数值;修改隐含参数 _ob_queuing_fast_freeze_min_count 的默认值,此参数限制 delete 语句到达这个阈值 后, 触发对 queuing 表执行转储的操作;

show parameters like '_ob_queuing_fast_freeze_min_count';
alter system set "_ob_queuing_fast_freeze_min_count"=20000;

上面这个参数查不到值 ,应该类似于oracle 的隐含参数,目前还没搞清楚ob中oracle租户的隐含参数怎么查询,但可以直接修改。

步骤 2 创建并登录 tpcc 用户,授予 dba 权限,创建 2 张表,一张表为普通表,另外一个为 queuing 表

create user tpcc identified by obce_test;
grant dba to tpcc;
drop table tab_no_queue purge; 
drop table tab_queue purge; 
create table tab_no_queue (id int primary key, name varchar(10), contact 
varchar(20), addr varchar(100)); 
create table tab_queue(id int primary key, name varchar(10), contact varchar(20), 
addr varchar(100)) table_mode='queuing';

步骤3 查看两个表的主副本位置

SELECTtenant.tenant_name,meta.table_id,tab.table_name,partition_id,ZONE,svr_ip,svr_port,CASEWHEN ROLE = 1 THEN 'leader'WHEN ROLE = 2
THEN 'follower'ELSE NULLEND AS ROLE,tab.primary_zone
FROM__all_virtual_meta_table meta
INNER JOIN __all_tenant tenant ONmeta.tenant_id = tenant.tenant_id
INNER JOIN __all_virtual_table tab ONmeta.tenant_id = tab.tenant_idAND meta.table_id = tab.table_id
WHEREtenant.tenant_id = 1004
ORDER BYtenant.tenant_name,table_name,partition_id,ZONE;

步骤4 向表 tab_no_queue 添加测试数据

insert into tab_no_queue select level, 
case mod(level,5) 
when 0 then '张一'
when 1 then '李一'
when 2 then '王一'
when 3 then '赵一'
when 4 then '钱一'
else null
end
, '1234567890','Asia-China-Sichuan-Chengdu' 
from dual where mod(level,5)=3 connect by level <=200000;
commit;

我这里把50w变成了20w 执行了两次,不然很容易报

步骤5 执行一次表和租户级别的转储, 避免以上插入操作对本实验的影响

ALTER SYSTEM MINOR FREEZE TENANT=(ob_ora);

步骤6 确认转储成功

SELECT * FROM __all_zone WHERE name='merge_status';

查看 gv$merge_info,确认转储发生时间

select * from gv$merge_info where table_id =1103909674337105 order by start_time  desc limit 6;

步骤 7 执行批量 insert 语句,模拟此表被应用插入新数据的场景

insert into tab_no_queue select level, 
case mod(level,5) 
when 0 then '张一'
when 1 then '李一'
when 2 then '王一'
when 3 then '赵一'
when 4 then '钱一'
else null
end, '1234567890','Asia-China-Sichuan-Chengdu' from dual where mod(level,5) in (2) 
connect by level <=150000;
commit; 

步骤 8 登陆 sys 租户,查看 tab_no_queue 表在 memstore 的内存消耗情况, 关注 used_mb 字段值

select ip,table_id,partition_id,round(used/1024/1024,1) as used_mb,hash_items,btree_items,is_active from gv$memstore_info 
where table_id =1103909674337105;

步骤 9 模拟修改表的操作,了解多版本数据对 memstore 内存的使用

update tab_no_queue set name = '王二' where mod(id,5) in (2);
commit;

步骤 10 删除记录, 观察是否触发系统转储,理解隐含参数 ob_queuing_fast_freeze_min_count 的含义, 得出结果此参数对非 queuing 表无效

delete from tab_no_queue where mod(id,5) in (2);
commit;

步骤 11 查看表 tab_no_queue 的转储情况,确认没有转储

select * from gv$merge_info where table_id =1103909674337105 order by start_time 
desc limit 6;

再次执行 insert 和 delete 操作, 观察 tab_no_queue 表的转储情况, 确认没有转储发生
insert into tab_no_queue
select level, 
case mod(level,5) 
when 0 then '张一'
when 1 then '李一'
when 2 then '王一'
when 3 then '赵一'
when 4 then '钱一'
else null
end
, '1234567890','Asia-China-Sichuan-Chengdu' 
from dual 
where mod(level,5) in (4) 
connect by level <=150000;
delete from tab_no_queue where mod(id,5) in (4);
commit;

步骤 12 对 tab_no_queue 执行全表扫描, 查看 gv$sql_audit 的执行信息 , 注意 execute_time 时间(86744),记录与后面的 queuing 表对比。

select 
svr_ip,query_sql,trace_id,sql_id,plan_id,is_hit_plan,plan_type,elapsed_time, 
execute_time,get_plan_time,table_scan,memstore_read_row_count, 
ssstore_read_row_count from gv$sql_audit where tenant_id=1004 and query_sql like 
'select%, count(*) from tab_no_queue%';

步骤 13 对 tab_queue 表(queuing 表)执行以上相同的步骤,查询表 tab_queue 的 table_id 和 leader 副本所在的 Observer IP 地址; 注意 tenant_id 根据实际 tenant_id(我这里是1004), 记录 table_id(1103909674337106)和 IP(127.0.0.1)

select tenant.tenant_name,meta.table_id, tab.table_name, 
partition_id,zone,svr_ip,svr_port, case when role=1 then 'leader' when role=2 
then 'follower' else null end as role, tab.primary_zone from 
__all_virtual_meta_table meta inner join __all_tenant tenant on 
meta.tenant_id=tenant.tenant_id inner join __all_virtual_table tab on 
meta.tenant_id=tab.tenant_id and meta.table_id=tab.table_id where 
tenant.tenant_id=1004 and tab.table_name='TAB_QUEUE' order by 
tenant.tenant_name,table_name,partition_id,zone;

步骤 14 向 queuing 表(tab_queue)添加测试数据

insert into tab_queue select level, 
case mod(level,5) 
when 0 then '张一'
when 1 then '李一'
when 2 then '王一'
when 3 then '赵一'
when 4 then '钱一'
else null
end
, '1234567890','Asia-China-Sichuan-Chengdu' 
from dual where mod(level,5)=3 connect by level <=200000;
commit; 

这里level这个测试参数还是改为200000。

步骤 15 执行一次表和租户级别的转储, 避免以上插入操作对本实验的影响

ALTER SYSTEM MINOR FREEZE TENANT=(ob_ora);

步骤 16 确认转储结束

SELECT * FROM __all_zone WHERE name='merge_status';

 查看 gv$merge_info,确认转储发生时间
select * from gv$merge_info where table_id =1103909674337106 order by start_time 
desc limit 6;

 步骤 17 执行批量 insert 语句,模拟此表被应用插入新数据的场景

insert into tab_queue select level, 
case mod(level,5) 
when 0 then '张一'
when 1 then '李一'
when 2 then '王一'
when 3 then '赵一'
when 4 then '钱一'
else null
end, '1234567890','Asia-China-Sichuan-Chengdu' from dual where mod(level,5) in (2) 
connect by level <=150000;
commit;

步骤 18 登陆 sys 租户,查看 tab_queue 表在 memstore 的内存消耗情况, 关注 used_mb 字段值

select ip,table_id,partition_id,round(used/1024/1024,1) as 
used_mb,hash_items,btree_items,is_active from gv$memstore_info where table_id = 1103909674337106;

步骤 19 模拟修改表的操作 ,了解多版本数据对 memstore 内存的使用 

update tab_queue set name = '王二' where mod(id,5) in (2);
commit;

 

步骤 20 再次查看此步骤的内存消耗,可以看到 update 语句消耗更多内存

select ip,table_id,partition_id,round(used/1024/1024,1) as 
used_mb,hash_items,btree_items,is_active from gv$memstore_info where table_id = 1103909674337106;

 

步骤 21 删除记录,观察是否触发系统转储,理解隐含参数 ob_queuing_fast_freeze_min_count 的含义

delete from tab_queue where mod(id,5) in (2);
commit;

 

步骤 22 查看表 tab_queue 的转储情况, 确认发生转储的信息(若没有立即发现转储发生,可以等 待 30 秒左右,多次执行此命令)

select * from gv$merge_info where table_id =1103909674337106 order by start_time 
desc limit 6;

步骤 23 再次执行 insert 和 delete 操作,观察 tab_queue 表的转储情况, 确认发生一次新的转储

insert into tab_queue
select level, 
case mod(level,5) 
when 0 then '张一'
when 1 then '李一'
when 2 then '王一'
when 3 then '赵一'
when 4 then '钱一'
else null
end
, '1234567890','Asia-China-Sichuan-Chengdu' 
from dual 
where mod(level,5) in (4) 
connect by level <=150000;
delete from tab_queue where mod(id,5) in (4);
commit; 

(思考:比较和非 queuing 表 tab_no_queue 的转储情况,可以看到 tab_queue 在 delete 语句满足隐含参数(_ob_queuing_fast_freeze_min_count)设定的阈值时,立刻发生自 动转储,随即执行了 queuing 表独有的 buf minor merge,把刚刚转储生成的 mini sstable 与 major sstable 合并成一个 minor sstable,这个操作有利于对 queuing 表的全表扫描效率)

步骤 24 对 tab_queue 执行全表扫描, 查看 gv$sql_audit 的执行信息 , 注意 execution_time 时 间, 对比与非 queuing 表的执行时间, queuing 表明显缩短。

select 
svr_ip,query_sql,trace_id,sql_id,plan_id,is_hit_plan,plan_type,elapsed_time, 
execute_time,get_plan_time,table_scan,memstore_read_row_count, 
ssstore_read_row_count from gv$sql_audit where tenant_id=1004 and query_sql like 
'select%, count(*) from tab_queue%';

 

官网结论:从 queuing 表和 no queuing 表的执行时间对比结果得出,queue 表在用户多次执 行 DML 语句后造成内存数据增加,但是对批量 delete 语句自动转储对查询链路增加的问题 进行了优化, queuing 表的全表扫描总耗时大大减少

个人结论: 在oceanbase 的LSM-tree 架构中,对表进行DML操作,因为oceanbase是准内存性数据库,所以中间的记录都会在内存中记录,有点像PG中update方式(PG中update操作会先insert 再给原数据打上delete,但数据并没有真正删除)。所以当表中比较频繁的执行DML操作的时候,就会占用大量的内存,并且在做查询的时候也会扫描已经打上delete的数据块。PG中有autovacuum来清理数据块,oceanbase中也有buffer(Queuing表)来解决这个问题,对于table_mode='queuing' 的表,

当删除的数据量达到 _ob_queuing_fast_freeze_min_count

或删除的比例达到_ob_queuing_fast_freeze_min_threshold 则直接开始转储。

官网中有很明确的buffer(Queuing表)转储策略图:

 

我们在做实验的时候也可以看到明确的buf minor merge 标记,也可以看到 非buffer表的execute时间 38361 明显 大于buffer表的execute时间 13967。并且非buffer表没有自适应的转储策略。

文章有参考自官网OBCE 培训学习资料-官网内存管理学习资料

这篇关于OBCE 第三章实验 内存管理手动实践 深入了解Queuing(buffer)表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130597

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分