5.12 飞行控制——PID参数优化

2024-09-02 15:28

本文主要是介绍5.12 飞行控制——PID参数优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 5.12 飞行控制——PID参数优化
      • 5.12.1 XY轴角度系统P参数优化
        • (1)软件设计
        • (2)运行与调试
      • 5.12.2 Z轴角度系统P参数优化
      • 5.12.3 Z轴位置系统P参数优化
      • 5.12.4 XY轴位置系统P参数优化

总目录:http://t.csdnimg.cn/YDe8m

5.12 飞行控制——PID参数优化

  在“5.9.8”小节提到过,使用Matlab自带的优化求解函数“lsqnonlin”函数,可以进行PID控制器参数的优化。但由于方法较为“粗暴”,当求解参数过多、系统过于复杂、离散时间数过大时常会出现死机、求解出错等问题。一个解决的方法就是分步进行PID参数的优化,并且只对P参数进行优化,其它参数设置为0,保证每次只对2~3个参数进行优化。
  本小节共有四个例程,依次对XY轴角度系统P参数、Z轴角度系统P参数、Z轴位置系统P参数、XY轴位置系统P参数进行了优化,最后得到了完整可用的四旋翼串级PID控制器的控制参数。

5.12.1 XY轴角度系统P参数优化

  首先对XY轴角度环PID、角速度环PID的P参数进行优化,由于XY轴参数经常是相同的,故最终只优化两个参数即可。

(1)软件设计

   本小节例程位于“2、飞控例程\Matlab\(5)飞行控制——PID参数优化\A1_XY轴角度系统系统P参数优化”中。
   例程中的文件如图5.11.2所示,主要增加了“A3_aXY_Angle_better_main.mlx”、“A3_aXY_Angle_better_run.m”、“A3_aXY_Angle_plot.m”等文件。

A3_aXY_Angle_better_main.mlx 文件

clear all;
close all;
clc;%% X、Y轴角度系统 P参数优化
K_pid0=[1 100];LB=[0 0];       %x、y轴角度环、角速度环PID P参数
UB=[10 1500];K_pid=lsqnonlin('A3_aXY_Angle_better_run',K_pid0,LB,UB);%输出优化后PID参数到Excel
K_pid = K_pid * 0.8;        %缩小到80%,防止震荡init = 0;
A2_init;
s_pid.K_pid(1:4, 1:3) = zeros(4, 3);
s_pid.K_pid(1:2, 1) =  K_pid'; 
s_pid.K_pid(3:4, 1) =  K_pid'; data_o = round(s_pid.K_pid, 3);   %四舍五入为3位小数
xlswrite('输出_PID参数.xlsx', data_o, 1, 'C2:E7');%% 使用优化后的PID参数 仿真并绘图
A3_aXY_Angle_plot(K_pid);         %优化PID参数 仿真并绘图
  • 行7~10
    设置角度环、角速度环PID中P参数的初值、下限、上限。
  • 行12
    运行优化函数,得到最优的P参数,保存在“K_pid”变量中
  • 行14
    为了适应之后位置环PID、线速度环PID的控制,这里对优化后参数进行80%的缩小。
  • 行17~21
    初始化系统,主要是使用“A2_init”读取“输入_系统参数.xlsx”文件中角度系统相关PID参数,其后将优化后的P参数保存在“s_pid.K_pid”变量对应位置。
  • 行23~24
    将优化后的PID参数四舍五入为3位小数,并保存到“输出_PID参数.xlsx”文件中,保存的位置如图5.12.1所示:

在这里插入图片描述

图 5.12.1

  • 行27
    调用“A3_aXY_Angle_plot”函数,使用优化后的参数进行四旋翼系统仿真,并绘制曲线图。

A3_aXY_Angle_better_run.m 文件
  该文件以“A1_main.mlx”文件为基础进行修改,只是在开关与结尾增加了一些内容。该函数的输入,为要优化的P参数,输出为第时刻X、Y轴角速度、角度期望与测量的误差。

function [Run_e] = A3_Pid_better_run(K_pid)
% PID控制系统运行函数% 输入:
%   K_pid   使用的PID的参数
%
% 输出
%   Run_e   各时刻 期望与系统输出的误差%% 初始化系统参数
init = 0;
A2_init;
s_pid.K_pid(1:4, 1:3) = zeros(4, 3);
s_pid.K_pid(1:2, 1) =  K_pid'; 
s_pid.K_pid(3:4, 1) =  K_pid'; %% 仿真
init = 1;   %已初始化完毕
for i = 1:(Num)% 串级PID控制C_Cascade_PID;% 动态系统响应M_Motor;    %电机s_A.u = s_mot.M_xyz;          %赋值角度系统输入M_Angle;                  %四旋翼角度系统s_P.u(1:3, 1) = s_mot.F_xyz;  %赋值位置系统输入s_P.u(4, 1) = s_P.g;M_Position;               %四旋翼位置系统%保存电机模型输入输出数据s_History.u_all(i, :) = s_mot.u_all';s_History.F_xyz(i, :) = s_mot.F_xyz';s_History.M_xyz(i, :) = s_mot.M_xyz';%保存角度系统输出数据s_History.ya(i, :) = s_A.y.*180/pi;  %角度,单位(deg) %保存位置系统输出数据s_History.yp(i, :) = s_P.y;  %位置,单位(m) 
end%% 函数输出
Ax_e = abs(s_pid.d(1)*180/pi - s_History.ya(:, 1)); 
Wx_e = abs(s_pid.d(2)*180/pi - s_History.ya(:, 2)); 
Ay_e = abs(s_pid.d(3)*180/pi - s_History.ya(:, 3)); 
Wy_e = abs(s_pid.d(4)*180/pi - s_History.ya(:, 4)); Run_e = [Ax_e 0.1*Wx_e Ay_e 0.1*Wy_e];end
  • 行11~15
    初始化系统,并将XY角度环、角速度环PID参数归零,之后再将其P值赋值为函数的输入。
  • 行17~43
    系统仿真,与“A1_main.mlx”相同。
  • 行46~52
    函数输出XY各时刻角度与角速度的误差,优化的过程就是不断尝试新的P参数以使输出的误差最小。

A3_aXY_Angle_plot.m 文件
  该函数也修改自“A1_main.mlx”文件。只是仿真时使用的是优化后的P参数。

function [] = A3_aXY_Angle_plot(K_pid)
% PID控制系统运行函数% 输入:
%   K_pid   使用的PID的参数
%
%% 初始化系统参数
init = 0;
A2_init;s_pid.K_pid(1:4, 1:3) = zeros(4, 3);
s_pid.K_pid(1:2, 1) =  K_pid'; 
s_pid.K_pid(3:4, 1) =  K_pid'; %% 仿真
init = 1;   %已初始化完毕
for i = 1:(Num)% 串级PID控制C_Cascade_PID;% 动态系统响应M_Motor;    %电机s_A.u = s_mot.M_xyz;          %赋值角度系统输入M_Angle;                  %四旋翼角度系统s_P.u(1:3, 1) = s_mot.F_xyz;  %赋值位置系统输入s_P.u(4, 1) = s_P.g;M_Position;               %四旋翼位置系统%保存电机模型输入输出数据s_History.u_all(i, :) = s_mot.u_all';s_History.F_xyz(i, :) = s_mot.F_xyz';s_History.M_xyz(i, :) = s_mot.M_xyz';%保存角度系统输出数据s_History.ya(i, :) = s_A.y.*180/pi;  %角度,单位(deg) %保存位置系统输出数据s_History.yp(i, :) = s_P.y;  %位置,单位(m) 
end%% 函数输出% 绘图
P_plot_all;end
  • 行8~13
    初始化系统,并将XY角度环、角速度环PID参数归零,之后再将其P值赋值为函数的输入。
(2)运行与调试

   双击进入“A3_aXY_Angle_better_main”文件,点击上方“实时编辑器”中的“运行”按钮即可运行例程。运行结果如图5.11.3所示。
在这里插入图片描述

(a)
在这里插入图片描述

(b)
在这里插入图片描述

(c)

图 5.12.2

  同时优化后的PID参数保存在“输出_PID参数.xlsx”文件中。将优化后的PID参数复制到“输入_系统参数.xlsx”文件对应位置,即可使用“A1_main.mxl”文件进行仿真。

5.12.2 Z轴角度系统P参数优化

   其原理与5.12.1小节相似,只是将优化的参数换为了z轴角度系统串级PID的P参数。
   本小节例程位于“2、飞控例程\Matlab\(5)飞行控制——PID参数优化\A2_Z轴角度系统系统P参数优化”中。
   主要增加了“A3_bZ_Angle_better_main.mlx”、“A3_bZ_Angle_better_run.m”、“A3_bZ_Angle_plot.m”等文件,其具体原理不同赘述。
   双击进入“A3_bZ_Angle_better_main.mlx”文件,点击上方“实时编辑器”中的“运行”按钮即可运行例程。运行结果如图5.11.3所示。
在这里插入图片描述

(a)
在这里插入图片描述

(b)
在这里插入图片描述

(c)

图 5.12.3

  然后,将优化后的PID参数从“输出_PID参数.xlsx”文件,复制到“输入_系统参数.xlsx”文件对应位置进行保存。

5.12.3 Z轴位置系统P参数优化

   本小节例程位于“2、飞控例程\Matlab\(5)飞行控制——PID参数优化\A3_Z轴位置系统系统P参数优化”中。功能是优化z轴位置系统串级PID的P参数
   主要增加了“A3_cZ_Position_better_main.mlx”、“A3_cZ_Position_better_run.m”、“A3_cZ_Position_plot.m”等文件,其具体原理不同赘述。
   双击进入“A3_cZ_Position_better_main.mlx”文件,点击上方“实时编辑器”中的“运行”按钮即可运行例程。运行结果如图5.11.4所示。
在这里插入图片描述

(a)
在这里插入图片描述

(b)
在这里插入图片描述

(c)

图 5.12.4

  然后,将优化后的PID参数从“输出_PID参数.xlsx”文件,复制到“输入_系统参数.xlsx”文件对应位置进行保存。

5.12.4 XY轴位置系统P参数优化

   本小节例程位于“2、飞控例程\Matlab\(5)飞行控制——PID参数优化\A4_XY轴位置系统系统P参数优化”中。功能是优化z轴位置系统串级PID的P参数
   主要增加了“A3_dXY_Position_better_main.mlx”、“A3_dXY_Position_better_run.m”、“A3_dXY_Position_plot.m”等文件,其具体原理不同赘述。
   双击进入“A3_dXY_Position_better_main.mlx”文件,点击上方“实时编辑器”中的“运行”按钮即可运行例程。运行结果如图5.11.5所示。
在这里插入图片描述

(a)
在这里插入图片描述

(b)
在这里插入图片描述

(c)

图 5.12.5

  然后,将优化后的PID参数从“输出_PID参数.xlsx”文件,复制到“输入_系统参数.xlsx”文件对应位置进行保存。至此所有串级PID的参数全部优化完毕。

这篇关于5.12 飞行控制——PID参数优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130337

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了