5.12 飞行控制——PID参数优化

2024-09-02 15:28

本文主要是介绍5.12 飞行控制——PID参数优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 5.12 飞行控制——PID参数优化
      • 5.12.1 XY轴角度系统P参数优化
        • (1)软件设计
        • (2)运行与调试
      • 5.12.2 Z轴角度系统P参数优化
      • 5.12.3 Z轴位置系统P参数优化
      • 5.12.4 XY轴位置系统P参数优化

总目录:http://t.csdnimg.cn/YDe8m

5.12 飞行控制——PID参数优化

  在“5.9.8”小节提到过,使用Matlab自带的优化求解函数“lsqnonlin”函数,可以进行PID控制器参数的优化。但由于方法较为“粗暴”,当求解参数过多、系统过于复杂、离散时间数过大时常会出现死机、求解出错等问题。一个解决的方法就是分步进行PID参数的优化,并且只对P参数进行优化,其它参数设置为0,保证每次只对2~3个参数进行优化。
  本小节共有四个例程,依次对XY轴角度系统P参数、Z轴角度系统P参数、Z轴位置系统P参数、XY轴位置系统P参数进行了优化,最后得到了完整可用的四旋翼串级PID控制器的控制参数。

5.12.1 XY轴角度系统P参数优化

  首先对XY轴角度环PID、角速度环PID的P参数进行优化,由于XY轴参数经常是相同的,故最终只优化两个参数即可。

(1)软件设计

   本小节例程位于“2、飞控例程\Matlab\(5)飞行控制——PID参数优化\A1_XY轴角度系统系统P参数优化”中。
   例程中的文件如图5.11.2所示,主要增加了“A3_aXY_Angle_better_main.mlx”、“A3_aXY_Angle_better_run.m”、“A3_aXY_Angle_plot.m”等文件。

A3_aXY_Angle_better_main.mlx 文件

clear all;
close all;
clc;%% X、Y轴角度系统 P参数优化
K_pid0=[1 100];LB=[0 0];       %x、y轴角度环、角速度环PID P参数
UB=[10 1500];K_pid=lsqnonlin('A3_aXY_Angle_better_run',K_pid0,LB,UB);%输出优化后PID参数到Excel
K_pid = K_pid * 0.8;        %缩小到80%,防止震荡init = 0;
A2_init;
s_pid.K_pid(1:4, 1:3) = zeros(4, 3);
s_pid.K_pid(1:2, 1) =  K_pid'; 
s_pid.K_pid(3:4, 1) =  K_pid'; data_o = round(s_pid.K_pid, 3);   %四舍五入为3位小数
xlswrite('输出_PID参数.xlsx', data_o, 1, 'C2:E7');%% 使用优化后的PID参数 仿真并绘图
A3_aXY_Angle_plot(K_pid);         %优化PID参数 仿真并绘图
  • 行7~10
    设置角度环、角速度环PID中P参数的初值、下限、上限。
  • 行12
    运行优化函数,得到最优的P参数,保存在“K_pid”变量中
  • 行14
    为了适应之后位置环PID、线速度环PID的控制,这里对优化后参数进行80%的缩小。
  • 行17~21
    初始化系统,主要是使用“A2_init”读取“输入_系统参数.xlsx”文件中角度系统相关PID参数,其后将优化后的P参数保存在“s_pid.K_pid”变量对应位置。
  • 行23~24
    将优化后的PID参数四舍五入为3位小数,并保存到“输出_PID参数.xlsx”文件中,保存的位置如图5.12.1所示:

在这里插入图片描述

图 5.12.1

  • 行27
    调用“A3_aXY_Angle_plot”函数,使用优化后的参数进行四旋翼系统仿真,并绘制曲线图。

A3_aXY_Angle_better_run.m 文件
  该文件以“A1_main.mlx”文件为基础进行修改,只是在开关与结尾增加了一些内容。该函数的输入,为要优化的P参数,输出为第时刻X、Y轴角速度、角度期望与测量的误差。

function [Run_e] = A3_Pid_better_run(K_pid)
% PID控制系统运行函数% 输入:
%   K_pid   使用的PID的参数
%
% 输出
%   Run_e   各时刻 期望与系统输出的误差%% 初始化系统参数
init = 0;
A2_init;
s_pid.K_pid(1:4, 1:3) = zeros(4, 3);
s_pid.K_pid(1:2, 1) =  K_pid'; 
s_pid.K_pid(3:4, 1) =  K_pid'; %% 仿真
init = 1;   %已初始化完毕
for i = 1:(Num)% 串级PID控制C_Cascade_PID;% 动态系统响应M_Motor;    %电机s_A.u = s_mot.M_xyz;          %赋值角度系统输入M_Angle;                  %四旋翼角度系统s_P.u(1:3, 1) = s_mot.F_xyz;  %赋值位置系统输入s_P.u(4, 1) = s_P.g;M_Position;               %四旋翼位置系统%保存电机模型输入输出数据s_History.u_all(i, :) = s_mot.u_all';s_History.F_xyz(i, :) = s_mot.F_xyz';s_History.M_xyz(i, :) = s_mot.M_xyz';%保存角度系统输出数据s_History.ya(i, :) = s_A.y.*180/pi;  %角度,单位(deg) %保存位置系统输出数据s_History.yp(i, :) = s_P.y;  %位置,单位(m) 
end%% 函数输出
Ax_e = abs(s_pid.d(1)*180/pi - s_History.ya(:, 1)); 
Wx_e = abs(s_pid.d(2)*180/pi - s_History.ya(:, 2)); 
Ay_e = abs(s_pid.d(3)*180/pi - s_History.ya(:, 3)); 
Wy_e = abs(s_pid.d(4)*180/pi - s_History.ya(:, 4)); Run_e = [Ax_e 0.1*Wx_e Ay_e 0.1*Wy_e];end
  • 行11~15
    初始化系统,并将XY角度环、角速度环PID参数归零,之后再将其P值赋值为函数的输入。
  • 行17~43
    系统仿真,与“A1_main.mlx”相同。
  • 行46~52
    函数输出XY各时刻角度与角速度的误差,优化的过程就是不断尝试新的P参数以使输出的误差最小。

A3_aXY_Angle_plot.m 文件
  该函数也修改自“A1_main.mlx”文件。只是仿真时使用的是优化后的P参数。

function [] = A3_aXY_Angle_plot(K_pid)
% PID控制系统运行函数% 输入:
%   K_pid   使用的PID的参数
%
%% 初始化系统参数
init = 0;
A2_init;s_pid.K_pid(1:4, 1:3) = zeros(4, 3);
s_pid.K_pid(1:2, 1) =  K_pid'; 
s_pid.K_pid(3:4, 1) =  K_pid'; %% 仿真
init = 1;   %已初始化完毕
for i = 1:(Num)% 串级PID控制C_Cascade_PID;% 动态系统响应M_Motor;    %电机s_A.u = s_mot.M_xyz;          %赋值角度系统输入M_Angle;                  %四旋翼角度系统s_P.u(1:3, 1) = s_mot.F_xyz;  %赋值位置系统输入s_P.u(4, 1) = s_P.g;M_Position;               %四旋翼位置系统%保存电机模型输入输出数据s_History.u_all(i, :) = s_mot.u_all';s_History.F_xyz(i, :) = s_mot.F_xyz';s_History.M_xyz(i, :) = s_mot.M_xyz';%保存角度系统输出数据s_History.ya(i, :) = s_A.y.*180/pi;  %角度,单位(deg) %保存位置系统输出数据s_History.yp(i, :) = s_P.y;  %位置,单位(m) 
end%% 函数输出% 绘图
P_plot_all;end
  • 行8~13
    初始化系统,并将XY角度环、角速度环PID参数归零,之后再将其P值赋值为函数的输入。
(2)运行与调试

   双击进入“A3_aXY_Angle_better_main”文件,点击上方“实时编辑器”中的“运行”按钮即可运行例程。运行结果如图5.11.3所示。
在这里插入图片描述

(a)
在这里插入图片描述

(b)
在这里插入图片描述

(c)

图 5.12.2

  同时优化后的PID参数保存在“输出_PID参数.xlsx”文件中。将优化后的PID参数复制到“输入_系统参数.xlsx”文件对应位置,即可使用“A1_main.mxl”文件进行仿真。

5.12.2 Z轴角度系统P参数优化

   其原理与5.12.1小节相似,只是将优化的参数换为了z轴角度系统串级PID的P参数。
   本小节例程位于“2、飞控例程\Matlab\(5)飞行控制——PID参数优化\A2_Z轴角度系统系统P参数优化”中。
   主要增加了“A3_bZ_Angle_better_main.mlx”、“A3_bZ_Angle_better_run.m”、“A3_bZ_Angle_plot.m”等文件,其具体原理不同赘述。
   双击进入“A3_bZ_Angle_better_main.mlx”文件,点击上方“实时编辑器”中的“运行”按钮即可运行例程。运行结果如图5.11.3所示。
在这里插入图片描述

(a)
在这里插入图片描述

(b)
在这里插入图片描述

(c)

图 5.12.3

  然后,将优化后的PID参数从“输出_PID参数.xlsx”文件,复制到“输入_系统参数.xlsx”文件对应位置进行保存。

5.12.3 Z轴位置系统P参数优化

   本小节例程位于“2、飞控例程\Matlab\(5)飞行控制——PID参数优化\A3_Z轴位置系统系统P参数优化”中。功能是优化z轴位置系统串级PID的P参数
   主要增加了“A3_cZ_Position_better_main.mlx”、“A3_cZ_Position_better_run.m”、“A3_cZ_Position_plot.m”等文件,其具体原理不同赘述。
   双击进入“A3_cZ_Position_better_main.mlx”文件,点击上方“实时编辑器”中的“运行”按钮即可运行例程。运行结果如图5.11.4所示。
在这里插入图片描述

(a)
在这里插入图片描述

(b)
在这里插入图片描述

(c)

图 5.12.4

  然后,将优化后的PID参数从“输出_PID参数.xlsx”文件,复制到“输入_系统参数.xlsx”文件对应位置进行保存。

5.12.4 XY轴位置系统P参数优化

   本小节例程位于“2、飞控例程\Matlab\(5)飞行控制——PID参数优化\A4_XY轴位置系统系统P参数优化”中。功能是优化z轴位置系统串级PID的P参数
   主要增加了“A3_dXY_Position_better_main.mlx”、“A3_dXY_Position_better_run.m”、“A3_dXY_Position_plot.m”等文件,其具体原理不同赘述。
   双击进入“A3_dXY_Position_better_main.mlx”文件,点击上方“实时编辑器”中的“运行”按钮即可运行例程。运行结果如图5.11.5所示。
在这里插入图片描述

(a)
在这里插入图片描述

(b)
在这里插入图片描述

(c)

图 5.12.5

  然后,将优化后的PID参数从“输出_PID参数.xlsx”文件,复制到“输入_系统参数.xlsx”文件对应位置进行保存。至此所有串级PID的参数全部优化完毕。

这篇关于5.12 飞行控制——PID参数优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130337

相关文章

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J