【ros2】 const builtin_interfaces::msg::Time timestamp解析

2024-09-02 13:12

本文主要是介绍【ros2】 const builtin_interfaces::msg::Time timestamp解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解析 const builtin_interfaces::msg::Time & timestamp

1. 数据类型

builtin_interfaces::msg::Time 是 ROS 2 中的一个消息类型,用于表示时间戳。

2. 结构

builtin_interfaces::msg::Time 包含以下字段:

struct Time
{std::uint32_t sec;std::uint32_t nanosec;
};

其中:

  • sec:秒部分。
  • nanosec:纳秒部分。
3. 参考代码
const builtin_interfaces::msg::Time & timestamp
  • 类型builtin_interfaces::msg::Time
  • 引用const 引用,表示传递的时间戳对象是只读的。
  • 作用:在函数中使用时间戳而不修改它。

示例代码

假设我们有一个函数 identity_transform_stamped,它接收一个时间戳、父坐标系名称和子坐标系名称,并返回一个单位变换的 TransformStamped 对象。

定义 identity_transform_stamped 函数
#include <geometry_msgs/msg/transform_stamped.hpp>
#include <builtin_interfaces/msg/time.hpp>
#include <tier4_autoware_utils/utils.hpp>  // 假设这是自定义库的头文件geometry_msgs::msg::TransformStamped identity_transform_stamped(const builtin_interfaces::msg::Time & timestamp, const std::string & header_frame_id,const std::string & child_frame_id)
{geometry_msgs::msg::TransformStamped transform;transform.header.stamp = timestamp;transform.header.frame_id = header_frame_id;transform.child_frame_id = child_frame_id;transform.transform.rotation = tier4_autoware_utils::createQuaternion(0.0, 0.0, 0.0, 1.0);transform.transform.translation = tier4_autoware_utils::createTranslation(0.0, 0.0, 0.0);return transform;
}
自定义库 tier4_autoware_utils
namespace tier4_autoware_utils
{geometry_msgs::msg::Quaternion createQuaternion(double x, double y, double z, double w){geometry_msgs::msg::Quaternion q;q.x = x;q.y = y;q.z = z;q.w = w;return q;}geometry_msgs::msg::Vector3 createTranslation(double x, double y, double z){geometry_msgs::msg::Vector3 v;v.x = x;v.y = y;v.z = z;return v;}
}

主程序

#include <rclcpp/rclcpp.hpp>
#include <geometry_msgs/msg/transform_stamped.hpp>
#include <builtin_interfaces/msg/time.hpp>
#include "tier4_autoware_utils/utils.hpp"  // 假设这是自定义库的头文件geometry_msgs::msg::TransformStamped identity_transform_stamped(const builtin_interfaces::msg::Time & timestamp, const std::string & header_frame_id,const std::string & child_frame_id)
{geometry_msgs::msg::TransformStamped transform;transform.header.stamp = timestamp;transform.header.frame_id = header_frame_id;transform.child_frame_id = child_frame_id;transform.transform.rotation = tier4_autoware_utils::createQuaternion(0.0, 0.0, 0.0, 1.0);transform.transform.translation = tier4_autoware_utils::createTranslation(0.0, 0.0, 0.0);return transform;
}int main(int argc, char ** argv)
{rclcpp::init(argc, argv);auto node = std::make_shared<rclcpp::Node>("example_node");// 创建时间戳builtin_interfaces::msg::Time timestamp;timestamp.sec = 1632480000;timestamp.nanosec = 123456789;// 设置父坐标系和子坐标系名称std::string header_frame_id = "world";std::string child_frame_id = "base_link";// 创建标识变换auto identity_transform = identity_transform_stamped(timestamp, header_frame_id, child_frame_id);// 打印变换信息RCLCPP_INFO(node->get_logger(), "Identity Transform:");RCLCPP_INFO(node->get_logger(), "Timestamp: %ld.%09ld", identity_transform.header.stamp.sec, identity_transform.header.stamp.nanosec);RCLCPP_INFO(node->get_logger(), "Frame ID: %s", identity_transform.header.frame_id.c_str());RCLCPP_INFO(node->get_logger(), "Child Frame ID: %s", identity_transform.child_frame_id.c_str());RCLCPP_INFO(node->get_logger(), "Translation: (%f, %f, %f)",identity_transform.transform.translation.x,identity_transform.transform.translation.y,identity_transform.transform.translation.z);RCLCPP_INFO(node->get_logger(), "Rotation: (%f, %f, %f, %f)",identity_transform.transform.rotation.x,identity_transform.transform.rotation.y,identity_transform.transform.rotation.z,identity_transform.transform.rotation.w);rclcpp::shutdown();return 0;
}

解释

  1. builtin_interfaces::msg::Time 数据类型

    • sec:秒部分。
    • nanosec:纳秒部分。
  2. const 引用

    • 类型const builtin_interfaces::msg::Time & timestamp
    • 作用:传递时间戳对象,并保证在函数内部不修改时间戳对象。

总结

  • 数据类型builtin_interfaces::msg::Time 包含秒和纳秒两部分。
  • const 引用:传递时间戳对象,并保证在函数内部不修改时间戳对象。
  • 示例代码:展示了如何使用 builtin_interfaces::msg::Time 创建时间戳,并将其传递给 identity_transform_stamped 函数以创建单位变换。

这篇关于【ros2】 const builtin_interfaces::msg::Time timestamp解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130053

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决