代码随想录算法训练营第三十二天(动态规划 一)

2024-09-02 12:12

本文主要是介绍代码随想录算法训练营第三十二天(动态规划 一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前几天有点忙加上贪心后面好难QWQ 暂时跳过两天的贪心,开始学动归

动态规划理论基础:

文章链接:代码随想录

文章思维导图:

文章摘要:

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

动态规划的解题步骤(动归五部曲)

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

一些建议与解惑   

一些同学可能想为什么要先确定递推公式,然后在考虑初始化呢?

因为一些情况是递推公式决定了dp数组要如何初始化!

做动归找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

力扣题部分:

509. 斐波那契数

题目链接:. - 力扣(LeetCode)

题面:

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1。

给定 n ,请计算 F(n) 。

思路:

动归五部曲:

1.确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

2.确定递推公式

递推公式题目直接给我们了,我们可以写出状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

3.dp数组如何初始化

同样也是直接由题目得出dp[0] = 0, dp[1] = 1。

4.确定遍历顺序

从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

5.举例推导dp数组

按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

0 1 1 2 3 5 8 13 21 34 55

代码实现:

class Solution {
public:int fib(int n) {int dp[35];if(n == 0 || n == 1) return n;dp[1] = 1;for(int i = 2; i <= n; i ++){dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};

70. 爬楼梯

题目链接:. - 力扣(LeetCode)

题面:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

思路:

动归五部曲:

1.确定dp数组以及下标的含义

dp[i]: 爬到第i层楼梯,有dp[i]种方法

2.确定递推公式

如何可以推出dp[i]呢?

首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。

还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!

递推公式: dp[n] = dp[n - 1] + dp[n - 2];

3.dp数组如何初始化

回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]种方法

递推公式需要两个值,由题目不难得出 dp[1] = 1, dp[2] = 2。

4.确定遍历顺序

遍历顺序一定是从前向后遍历的,和上一题本质其实一样。

5.举例推导dp数组

1 2 3 5 8 13 21 34 55

不少人肯定看出来了,这不就是斐波那契数列么!

和上一题区别就是没前两个数组而已。

代码实现:

class Solution {
public:int climbStairs(int n) {int dp[50];if(n == 1 || n == 2) return n;dp[1] = 1, dp[2] = 2;for(int i = 3; i <= n; i ++){dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};

746. 使用最小花费爬楼梯

题目链接:. - 力扣(LeetCode)

题面:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

思路:

动归五部曲:

1.确定dp数组以及下标的含义

dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。

2.确定递推公式

可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

3.dp数组如何初始化

看一下递推公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

题目说你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。也就是说到达 第 0 个台阶是不花费的,但从 第0 个台阶往上跳的话,需要花费 cost[0]。

所以初始化 dp[0] = 0,dp[1] = 0;

4.确定遍历顺序

因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

今天的三道题好像这个步骤不需要思考,但随着后面的学习,我们会遇到需要在这块做文章的题目的。

5.举例推导dp数组

拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

代码实现:

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int dp[1000] = {0};for(int i = 2; i < cost.size(); i ++){dp[i] = min((dp[i - 1] + cost[i - 1]), (dp[i - 2] + cost[i - 2]));//cout<<dp[i]<<" ";}int ans = min(dp[cost.size() - 1] + cost[cost.size() - 1], dp[cost.size() - 2] + cost[cost.size() - 2]);return ans;}
};

这篇关于代码随想录算法训练营第三十二天(动态规划 一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129922

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n