算法:算法概述【时间复杂度、空间复杂度】

2024-09-02 04:08

本文主要是介绍算法:算法概述【时间复杂度、空间复杂度】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、算法定义

算法:为了实现业务目的的各种方法和思路就是算法。同样的数据,同样的目的, 不同的算法,不同的方法和思路,效率就会不同
算法是一种独立的存在 , 它并不依附于代码 , 代码只是实现算法思想的方式而已。
算法是独立存在的一种解决问题的方法和思想
对于算法而言,实现的语言并不重要,重要的是思想
算法可以有不同的语言描述实现版本(如C描述、C++描述、Python描述等)

二、算法的五大特性

  1. 输入: 算法具有0个或多个输入
  2. 输出: 算法至少有1个或多个输出
  3. 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
  4. 确定性:算法中的每一步都有确定的含义,不会出现二义性
  5. 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

三、算法优劣的衡量:时间复杂度、空间复杂度

当我们说算法A的效率高于算法B,指的是 “时间复杂度” 的比较。

1. 时间复杂度

一个算法的实际运行时间很难评估,当时的输入、CPU主频、内存、数据传输速度、是否有其他程序在抢占资源等等,这些因素都会影响算法的实际运行时间。

为了公平地对比不同算法的效率,需要脱离开这些物理条件,抽象出一个数学描述。在所有这些因素中,问题的规模往往是决定算法时间的最主要因素。因此,定义算法的时间复杂度 T ( n ) T(n) T(n),用来描述算法的执行时间随着输入规模的增长将如何变化,增长速度是怎样的。

在输入规模较小时,运行时间本来就少,不同算法的差异不大。所以,时间复杂度通常关注的是输入规模n较大时运行时间的变化趋势,称之为渐进复杂度,采用大O记号。

如果A算法的时间复杂度优于算法B的时间复杂度,那么存在一个足够大的数M,当n>M时,可以保证算法A的实际效率优于算法B的实际效率

1.1 大O表示法

时间复杂度可以表示一个算法随着问题规模不断变化的最主要趋势 , 同时时间复杂度往往和大O表示法一起使用

在这里插入图片描述

1.2 时间复杂度的计算规则
  1. 基本操作,认为其时间复杂度为O(1)
  2. 顺序结构,时间复杂度按加法进行计算
  3. 循环结构,时间复杂度按乘法进行计算
  4. 分支结构,时间复杂度取最大值
  5. 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
  6. 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
1.3 最优、最坏时间复杂度

分析算法时,存在几种可能的考虑:

  1. 算法完成工作最少需要多少基本操作,即最优时间复杂度
  2. 算法完成工作最多需要多少基本操作,即最坏时间复杂度
  3. 算法完成工作平均需要多少基本操作,即平均时间复杂度

假如我们有一个列表 , 我们要通过一个算法从这个列表中找到10

  • 最坏时间复杂度:my_list = [ 1 , 5 , 6 , 4 , 3 , 2 , 7 , 8 , 9 , 10 ]

  • 最优时间复杂度:my_list = [ 10 , 5 , 6 , 4 , 3 , 2 , 7 , 8 , 9 , 1 ]

对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息其反映的只是最乐观最理想的情况,没有参考价值。
对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作
对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。

因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度

1.4 常见的时间复杂度
执行次数函数举例非正式术语
12O(1)常数阶
2n+3O(n)线性阶
3n2+2n+1O(n2)平方阶
5log2n+20O(logn)对数阶
2n+3nlog2n+19O(nlogn)nlogn阶
6n3+2n2+3n+4O(n3)立方阶
2nO(2n)指数阶
注意,经常将log2n(以2为底的对数)简写成logn

在这里插入图片描述
在这里插入图片描述
所消耗的时间从小到大:
O ( 1 ) < O ( l o g n ) < O ( n ) < O ( n ) < O ( n l o g n ) < O ( n 2 ) < O ( n 2 l o g n ) < O ( n 3 ) O(1) < O(logn) < O(\sqrt{n})< O(n) < O(nlogn) < O(n^2) < O(n^2logn) < O(n^3) O(1)<O(logn)<O(n )<O(n)<O(nlogn)<O(n2)<O(n2logn)<O(n3) < O ( 2 n ) < O ( n ! ) < O ( n n ) < O(2^n) < O(n!) < O(n^n) <O(2n)<O(n!)<O(nn)

  • O ( n p ) O(n^p) O(np):多项式复杂度,该类算法可计算,该类问题可解决;
  • O ( p n ) O(p^n) O(pn):指数级复杂度,该类算法不可计算,不可解决;NP-Hard复杂度问题【O(2n) 、 O(n!) 、 O(nn)】

在这里插入图片描述

2. 空间复杂度

空间复杂度S(n):该算法所耗费的存储空间
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的度量
算法的时间复杂度和空间复杂度合称为算法的复杂度

四、函数的时间复杂度(举例)

1. Python内置list类型(不能算作基本数据类型)操作的时间复杂度

在这里插入图片描述

方法复杂度简介
index[x]O(1)索引
index assignmentO(1)索引赋值
appendO(1)尾部追加
pop()O(1)尾部弹出
pop(i)O(n)指定位置弹出 n列表长度, 最坏时间复杂度
insert(i, item)O(n)指定位置添加
del operatorO(n)删除, 代表一个一个元素去清空
iterationO(n)迭代
contains(in)O(n)看谁是否在列表中, 需要遍历
get slice[x:y]O(k)取切片, 从x取到y, 一次定位到x, 然后取到y ,x和y之间有多少就是k
del sliceO(n)删除切片 删除位置之后, 后面的元素都需要往前移动
set sliceO(k)设置切片, li[0:3] = [1, 2, 3, 4]k是补充的东西数量
reverseO(n)置返
concatenateO(k)代表使用的+, 把两个列表加到一起, k是第二个列表中的元素
sortO(nlogn)排序
multiplyO(nk)相乘 li=[1, 2] -> n li * 10 -> k

2. Python内置dict类型(不能算作基本数据类型)操作的时间复杂度

在这里插入图片描述

方法复杂度简介
copyO(n)复制
get itemO(1)
set itemO(1)设置
delete itemO(1)删除键
contains(in)O(1)包含
iterationO(n)迭代

Dict的特性:

  • 查找速度快,无论dict有10个元素还是10万个元素,查找速度都一样。而list的查找速度随着元素增加而逐渐下降。
    不过dict的查找速度快不是没有代价的,dict的缺点是占用内存大,还会浪费很多内容,list正好相反,占用内存小,但是查找速度慢。
  • 字典值可以没有限制地取任何python对象,既可以是标准的对象,也可以是用户定义的,但键不行。不允许同一个键出现两次。
    键必须不可变,所以可以用数字,字符串或元组充当,所以用列表就不行。
  • dict的第二个特点就是存储的key-value序对是没有顺序的!这和list不一样。



参考资料:
常用数据结构操作与算法复杂度总结
算法复杂度分析
Master Theorem:Practice Problems and Solutions
(数据结构)十分钟搞定时间复杂度(算法的时间复杂度)

这篇关于算法:算法概述【时间复杂度、空间复杂度】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128945

相关文章

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不