算法:算法概述【时间复杂度、空间复杂度】

2024-09-02 04:08

本文主要是介绍算法:算法概述【时间复杂度、空间复杂度】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、算法定义

算法:为了实现业务目的的各种方法和思路就是算法。同样的数据,同样的目的, 不同的算法,不同的方法和思路,效率就会不同
算法是一种独立的存在 , 它并不依附于代码 , 代码只是实现算法思想的方式而已。
算法是独立存在的一种解决问题的方法和思想
对于算法而言,实现的语言并不重要,重要的是思想
算法可以有不同的语言描述实现版本(如C描述、C++描述、Python描述等)

二、算法的五大特性

  1. 输入: 算法具有0个或多个输入
  2. 输出: 算法至少有1个或多个输出
  3. 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
  4. 确定性:算法中的每一步都有确定的含义,不会出现二义性
  5. 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

三、算法优劣的衡量:时间复杂度、空间复杂度

当我们说算法A的效率高于算法B,指的是 “时间复杂度” 的比较。

1. 时间复杂度

一个算法的实际运行时间很难评估,当时的输入、CPU主频、内存、数据传输速度、是否有其他程序在抢占资源等等,这些因素都会影响算法的实际运行时间。

为了公平地对比不同算法的效率,需要脱离开这些物理条件,抽象出一个数学描述。在所有这些因素中,问题的规模往往是决定算法时间的最主要因素。因此,定义算法的时间复杂度 T ( n ) T(n) T(n),用来描述算法的执行时间随着输入规模的增长将如何变化,增长速度是怎样的。

在输入规模较小时,运行时间本来就少,不同算法的差异不大。所以,时间复杂度通常关注的是输入规模n较大时运行时间的变化趋势,称之为渐进复杂度,采用大O记号。

如果A算法的时间复杂度优于算法B的时间复杂度,那么存在一个足够大的数M,当n>M时,可以保证算法A的实际效率优于算法B的实际效率

1.1 大O表示法

时间复杂度可以表示一个算法随着问题规模不断变化的最主要趋势 , 同时时间复杂度往往和大O表示法一起使用

在这里插入图片描述

1.2 时间复杂度的计算规则
  1. 基本操作,认为其时间复杂度为O(1)
  2. 顺序结构,时间复杂度按加法进行计算
  3. 循环结构,时间复杂度按乘法进行计算
  4. 分支结构,时间复杂度取最大值
  5. 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
  6. 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
1.3 最优、最坏时间复杂度

分析算法时,存在几种可能的考虑:

  1. 算法完成工作最少需要多少基本操作,即最优时间复杂度
  2. 算法完成工作最多需要多少基本操作,即最坏时间复杂度
  3. 算法完成工作平均需要多少基本操作,即平均时间复杂度

假如我们有一个列表 , 我们要通过一个算法从这个列表中找到10

  • 最坏时间复杂度:my_list = [ 1 , 5 , 6 , 4 , 3 , 2 , 7 , 8 , 9 , 10 ]

  • 最优时间复杂度:my_list = [ 10 , 5 , 6 , 4 , 3 , 2 , 7 , 8 , 9 , 1 ]

对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息其反映的只是最乐观最理想的情况,没有参考价值。
对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作
对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。

因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度

1.4 常见的时间复杂度
执行次数函数举例非正式术语
12O(1)常数阶
2n+3O(n)线性阶
3n2+2n+1O(n2)平方阶
5log2n+20O(logn)对数阶
2n+3nlog2n+19O(nlogn)nlogn阶
6n3+2n2+3n+4O(n3)立方阶
2nO(2n)指数阶
注意,经常将log2n(以2为底的对数)简写成logn

在这里插入图片描述
在这里插入图片描述
所消耗的时间从小到大:
O ( 1 ) < O ( l o g n ) < O ( n ) < O ( n ) < O ( n l o g n ) < O ( n 2 ) < O ( n 2 l o g n ) < O ( n 3 ) O(1) < O(logn) < O(\sqrt{n})< O(n) < O(nlogn) < O(n^2) < O(n^2logn) < O(n^3) O(1)<O(logn)<O(n )<O(n)<O(nlogn)<O(n2)<O(n2logn)<O(n3) < O ( 2 n ) < O ( n ! ) < O ( n n ) < O(2^n) < O(n!) < O(n^n) <O(2n)<O(n!)<O(nn)

  • O ( n p ) O(n^p) O(np):多项式复杂度,该类算法可计算,该类问题可解决;
  • O ( p n ) O(p^n) O(pn):指数级复杂度,该类算法不可计算,不可解决;NP-Hard复杂度问题【O(2n) 、 O(n!) 、 O(nn)】

在这里插入图片描述

2. 空间复杂度

空间复杂度S(n):该算法所耗费的存储空间
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的度量
算法的时间复杂度和空间复杂度合称为算法的复杂度

四、函数的时间复杂度(举例)

1. Python内置list类型(不能算作基本数据类型)操作的时间复杂度

在这里插入图片描述

方法复杂度简介
index[x]O(1)索引
index assignmentO(1)索引赋值
appendO(1)尾部追加
pop()O(1)尾部弹出
pop(i)O(n)指定位置弹出 n列表长度, 最坏时间复杂度
insert(i, item)O(n)指定位置添加
del operatorO(n)删除, 代表一个一个元素去清空
iterationO(n)迭代
contains(in)O(n)看谁是否在列表中, 需要遍历
get slice[x:y]O(k)取切片, 从x取到y, 一次定位到x, 然后取到y ,x和y之间有多少就是k
del sliceO(n)删除切片 删除位置之后, 后面的元素都需要往前移动
set sliceO(k)设置切片, li[0:3] = [1, 2, 3, 4]k是补充的东西数量
reverseO(n)置返
concatenateO(k)代表使用的+, 把两个列表加到一起, k是第二个列表中的元素
sortO(nlogn)排序
multiplyO(nk)相乘 li=[1, 2] -> n li * 10 -> k

2. Python内置dict类型(不能算作基本数据类型)操作的时间复杂度

在这里插入图片描述

方法复杂度简介
copyO(n)复制
get itemO(1)
set itemO(1)设置
delete itemO(1)删除键
contains(in)O(1)包含
iterationO(n)迭代

Dict的特性:

  • 查找速度快,无论dict有10个元素还是10万个元素,查找速度都一样。而list的查找速度随着元素增加而逐渐下降。
    不过dict的查找速度快不是没有代价的,dict的缺点是占用内存大,还会浪费很多内容,list正好相反,占用内存小,但是查找速度慢。
  • 字典值可以没有限制地取任何python对象,既可以是标准的对象,也可以是用户定义的,但键不行。不允许同一个键出现两次。
    键必须不可变,所以可以用数字,字符串或元组充当,所以用列表就不行。
  • dict的第二个特点就是存储的key-value序对是没有顺序的!这和list不一样。



参考资料:
常用数据结构操作与算法复杂度总结
算法复杂度分析
Master Theorem:Practice Problems and Solutions
(数据结构)十分钟搞定时间复杂度(算法的时间复杂度)

这篇关于算法:算法概述【时间复杂度、空间复杂度】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128945

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多