机器学习-算法-半监督学习:半监督学习(Semi-supervised Learning)算法

2024-09-02 03:58

本文主要是介绍机器学习-算法-半监督学习:半监督学习(Semi-supervised Learning)算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工智能-机器学习-算法-半监督学习:半监督学习(Semi-supervised Learning)算法

  • 一、半监督学习算法提出的背景
    • 1、监督学习算法
    • 2、无监督学习算法
    • 3、监督学习的特征选择方法
    • 4、无监督学习的特征选择方法
    • 5、问题的提出
  • 二、学术名词区分
    • 1、主动学习(active learning)
    • 2、归纳式学习(inductive learning)
    • 3、直推式学习(transductive learning)
    • 4、监督学习、半监督归纳式学习、半监督直推式学习区别
    • 5、半监督归纳式(induction)学习
    • 6、半监督直推式(transductive)学习
  • 三、半监督学习的基本假设
    • 1、平滑假设(smoothness assumption)
    • 2、聚类假设(cluster assumption)
    • 3、流型假设(maniford assumption)
  • 四、半监督学习算法的主要方法
    • 1、生成式模型(Generative Model)/最大期望法(EM算法)
      • 1.1 生成模型与判别模型
      • 1.2 高斯混合模型的似然函数
      • 1.3 参数估计
    • 2、低密度分割算法(Low-density Separation):自训练(Self-training)
      • 2.1 Self-training步骤
      • 2.2 Self-training损失函数
    • 3、转导支持向量机(Transductive Support Vector Machines)-聚类假设
    • 4、先聚类后标注算法(Cluster and then Label)
      • 4.1 Smoothness Assumption
      • 4.2 Cluster and then Label
    • 5、基于图的方法(Graph-Based Approach)
      • 5.1 Graph Construction
      • 5.2 Smoothness of the labels on the graph
    • 6、协同训练(Co-training)
  • 五、半监督学习算法应用实例
    • 1、语音识别(Speech Recognition)
    • 2、文本分类(Text categorization)
    • 3、语义解析(Parsing)
    • 4、视频监控(Video surveillance)
    • 5、蛋白质结构预测(Protein structure prediction)
  • 六、半监督学习中待研究的问题
    • 1、无标签样本的有效利用问题
    • 2、大量无标签样本的高效使用问题
    • 3、特征选择中的有效性问题

一、半监督学习算法提出的背景

1、监督学习算法

  • 监督学习:训练样本集不仅包含样本,还包含这些样本对应的标签,即样本和样本标签成对出现。监督学习的目标是从训练样本中学习一个从样本到标签的有效映射,使其能够预测未知样本的标签。监督学习是机器学习中最成熟的学习方法,代表性的算法包括神经网络、支持向量机(SVM)等。
    在这里插入图片描述

2、无监督学习算法

  • 无监督学习:只能利用训练样本的数据分布或样本间的关系将样本划分到不同的聚类簇或给出样本对应的低维结构。- 因此,无监督学习常被用于对样本进行聚类或降维,典型的算法包括尺均值聚类和主成分分析等。
    在这里插入图片描述

3、监督学习的

这篇关于机器学习-算法-半监督学习:半监督学习(Semi-supervised Learning)算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128931

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用