深度学习:TensorFlow2构建、保存、加载神经网络模型【经典流程】

本文主要是介绍深度学习:TensorFlow2构建、保存、加载神经网络模型【经典流程】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、network.save_weights、network.load_weights

保存模型的参数,加载已保存的参数的network的结构必须和之前的network的所有结构一模一样

import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 放在 import tensorflow as tf 之前才有效import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers, datasets# 一、获取数据集
(X_train, Y_train), (X_test, Y_test) = datasets.mnist.load_data()
print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))# 二、数据处理
# 预处理函数:将numpy数据转为tensor
def preprocess(x, y):x = tf.cast(x, dtype=tf.float32) / 255.x = tf.reshape(x, [28 * 28])y = tf.cast(y, dtype=tf.int32)y = tf.one_hot(y, depth=10)return x, y# 2.1 处理训练集
# print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))
dataset_train = tf.data.Dataset.from_tensor_slices((X_train, Y_train))  # 此步骤自动将numpy类型的数据转为tensor
dataset_train = dataset_train.map(preprocess)  # 调用map()函数批量修改每一个元素数据的数据类型
dataset_train = dataset_train.shuffle(len(X_train))  # 打散dataset_train中的样本顺序,防止图片的原始顺序对神经网络性能的干扰
print('dataset_train = {0},type(dataset_train) = {1}'.format(dataset_train, type(dataset_train)))
batch_size_train = 20000  # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_train = dataset_train.batch(batch_size_train)  # 将dataset_batch_train中每sample_num_of_each_batch_train张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_train张图片
print('dataset_batch_train = {0},type(dataset_batch_train) = {1}'.format(dataset_batch_train, type(dataset_batch_train)))
# 2.2 处理测试集
dataset_test = tf.data.Dataset.from_tensor_slices((X_test, Y_test))  # 此步骤自动将numpy类型的数据转为tensor
dataset_test = dataset_test.map(preprocess)  # 调用map()函数批量修改每一个元素数据的数据类型
dataset_test = dataset_test.shuffle(len(X_test))  # 打散样本顺序,防止图片的原始顺序对神经网络性能的干扰
batch_size_test = 5000  # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_test = dataset_test.batch(batch_size_test)  # 将dataset_test中每sample_num_of_each_batch_test张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_test张图片# 三、构建神经网络结构:Dense 表示全连接神经网络,激活函数用 relu
network = keras.Sequential([layers.Dense(500, activation=tf.nn.relu),  # 降维:784-->500layers.Dense(300, activation=tf.nn.relu),  # 降维:500-->300layers.Dense(100, activation=tf.nn.relu),  # 降维:300-->100layers.Dense(10)])  # 降维:100-->10,最后一层一般不需要在此处指定激活函数,在计算Loss的时候会自动运用激活函数
network.build(input_shape=[None, 784])  # 28*28=784,None表示样本数量,是不确定的值。
network.summary()  # 打印神经网络model的简要信息# 四、设置神经网络各个参数
network.compile(optimizer=optimizers.Adam(lr=0.01),loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 五、给神经网络喂数据,训练神经网络模型参数
print('\n++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.fit(dataset_batch_train, epochs=5, validation_data=dataset_batch_test, validation_freq=2)  # validation_freq参数表示每多少个epoch做一次验证/validation
print('++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')# 六、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')network.save_weights('weights.ckpt')
print('\n================saved weights================')
del network
print('================del network================')# 七、创建一个和所加载参数的原始network一模一样的network
print('================创建一个和所加载参数的原始network一模一样的network================')
network = keras.Sequential([layers.Dense(500, activation=tf.nn.relu),  # 降维:784-->500layers.Dense(300, activation=tf.nn.relu),  # 降维:500-->300layers.Dense(100, activation=tf.nn.relu),  # 降维:300-->100layers.Dense(10)])  # 降维:100-->10,最后一层一般不需要在此处指定激活函数,在计算Loss的时候会自动运用激活函数
network.build(input_shape=[None, 784])  # 28*28=784,None表示样本数量,是不确定的值。
network.compile(optimizer=optimizers.Adam(lr=0.01),loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
network.load_weights('weights.ckpt')
print('================loaded weights================')# 八、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')# 九、模型上线应用
sample = next(iter(dataset_batch_test))  # 从 dataset_batch_test 中取一个batch数据做模拟
x = sample[0]
y = sample[1]  # one-hot
pred = network.predict(x)  # [b, 10]
y = tf.argmax(y, axis=1)  # convert back to number
pred = tf.argmax(pred, axis=1)
print('\n++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
print(pred)
print(y)
print('++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++')

打印结果:

X_train.shpae = (60000, 28, 28),Y_train.shpae = (60000,)------------type(X_train) = <class 'numpy.ndarray'>type(Y_train) = <class 'numpy.ndarray'>
dataset_train = <ShuffleDataset shapes: ((784,), (10,)), types: (tf.float32, tf.float32)>type(dataset_train) = <class 'tensorflow.python.data.ops.dataset_ops.ShuffleDataset'>
dataset_batch_train = <BatchDataset shapes: ((None, 784), (None, 10)), types: (tf.float32, tf.float32)>type(dataset_batch_train) = <class 'tensorflow.python.data.ops.dataset_ops.BatchDataset'>
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 500)               392500    
_________________________________________________________________
dense_1 (Dense)              (None, 300)               150300    
_________________________________________________________________
dense_2 (Dense)              (None, 100)               30100     
_________________________________________________________________
dense_3 (Dense)              (None, 10)                1010      
=================================================================
Total params: 573,910
Trainable params: 573,910
Non-trainable params: 0
_________________________________________________________________++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
Epoch 1/5
3/3 [==============================] - 2s 113ms/step - loss: 2.7174 - accuracy: 0.1086
Epoch 2/5
3/3 [==============================] - 3s 492ms/step - loss: 2.6596 - accuracy: 0.1666 - val_loss: 1.6333 - val_accuracy: 0.4709
Epoch 3/5
3/3 [==============================] - 2s 115ms/step - loss: 1.5516 - accuracy: 0.4968
Epoch 4/5
3/3 [==============================] - 2s 255ms/step - loss: 1.0690 - accuracy: 0.6475 - val_loss: 0.7587 - val_accuracy: 0.7859
Epoch 5/5
3/3 [==============================] - 2s 115ms/step - loss: 0.7137 - accuracy: 0.7955
++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 22ms/step - loss: 0.5240 - accuracy: 0.8493
++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++================saved weights================
================del network================
================创建一个和所加载参数的原始network一模一样的network================
================loaded weights================++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 22ms/step - loss: 0.5223 - accuracy: 0.8486
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++
tf.Tensor([6 3 7 ... 5 1 0], shape=(5000,), dtype=int64)
tf.Tensor([6 3 7 ... 3 1 0], shape=(5000,), dtype=int64)
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++Process finished with exit code 0

二、network.save()、network.load()

保存整个模型,加载后再根据network的通常做法进行操作。

import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 放在 import tensorflow as tf 之前才有效import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers, datasets# 一、获取数据集
(X_train, Y_train), (X_test, Y_test) = datasets.mnist.load_data()
print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))# 二、数据处理
# 预处理函数:将numpy数据转为tensor
def preprocess(x, y):x = tf.cast(x, dtype=tf.float32) / 255.x = tf.reshape(x, [28 * 28])y = tf.cast(y, dtype=tf.int32)y = tf.one_hot(y, depth=10)return x, y# 2.1 处理训练集
# print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))
dataset_train = tf.data.Dataset.from_tensor_slices((X_train, Y_train))  # 此步骤自动将numpy类型的数据转为tensor
dataset_train = dataset_train.map(preprocess)  # 调用map()函数批量修改每一个元素数据的数据类型
dataset_train = dataset_train.shuffle(len(X_train))  # 打散dataset_train中的样本顺序,防止图片的原始顺序对神经网络性能的干扰
print('dataset_train = {0},type(dataset_train) = {1}'.format(dataset_train, type(dataset_train)))
batch_size_train = 20000  # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_train = dataset_train.batch(batch_size_train)  # 将dataset_batch_train中每sample_num_of_each_batch_train张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_train张图片
print('dataset_batch_train = {0},type(dataset_batch_train) = {1}'.format(dataset_batch_train, type(dataset_batch_train)))
# 2.2 处理测试集
dataset_test = tf.data.Dataset.from_tensor_slices((X_test, Y_test))  # 此步骤自动将numpy类型的数据转为tensor
dataset_test = dataset_test.map(preprocess)  # 调用map()函数批量修改每一个元素数据的数据类型
dataset_test = dataset_test.shuffle(len(X_test))  # 打散样本顺序,防止图片的原始顺序对神经网络性能的干扰
batch_size_test = 5000  # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_test = dataset_test.batch(batch_size_test)  # 将dataset_test中每sample_num_of_each_batch_test张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_test张图片# 三、构建神经网络结构:Dense 表示全连接神经网络,激活函数用 relu
network = keras.Sequential([layers.Dense(500, activation=tf.nn.relu),  # 降维:784-->500layers.Dense(300, activation=tf.nn.relu),  # 降维:500-->300layers.Dense(100, activation=tf.nn.relu),  # 降维:300-->100layers.Dense(10)])  # 降维:100-->10,最后一层一般不需要在此处指定激活函数,在计算Loss的时候会自动运用激活函数
network.build(input_shape=[None, 784])  # 28*28=784,None表示样本数量,是不确定的值。
network.summary()  # 打印神经网络model的简要信息# 四、设置神经网络各个参数
network.compile(optimizer=optimizers.Adam(lr=0.01),loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 五、给神经网络喂数据,训练神经网络模型参数
print('\n++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.fit(dataset_batch_train, epochs=5, validation_data=dataset_batch_test, validation_freq=2)  # validation_freq参数表示每多少个epoch做一次验证/validation
print('++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')# 六、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')network.save('model.h5')
print('\n================saved total model================')
del network
print('================del network================')# 七、从磁盘加载保存的整体模型(包括所有参数、结构...)
print('================loaded model from file================')
network = tf.keras.models.load_model('model.h5', compile=False)
network.compile(optimizer=optimizers.Adam(lr=0.01),loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 八、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')# 九、模型上线应用
sample = next(iter(dataset_batch_test))  # 从 dataset_batch_test 中取一个batch数据做模拟
x = sample[0]
y = sample[1]  # one-hot
pred = network.predict(x)  # [b, 10]
y = tf.argmax(y, axis=1)  # convert back to number
pred = tf.argmax(pred, axis=1)
print('\n++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
print(pred)
print(y)
print('++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++')

打印结果:

X_train.shpae = (60000, 28, 28),Y_train.shpae = (60000,)------------type(X_train) = <class 'numpy.ndarray'>type(Y_train) = <class 'numpy.ndarray'>
dataset_train = <ShuffleDataset shapes: ((784,), (10,)), types: (tf.float32, tf.float32)>type(dataset_train) = <class 'tensorflow.python.data.ops.dataset_ops.ShuffleDataset'>
dataset_batch_train = <BatchDataset shapes: ((None, 784), (None, 10)), types: (tf.float32, tf.float32)>type(dataset_batch_train) = <class 'tensorflow.python.data.ops.dataset_ops.BatchDataset'>
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 500)               392500    
_________________________________________________________________
dense_1 (Dense)              (None, 300)               150300    
_________________________________________________________________
dense_2 (Dense)              (None, 100)               30100     
_________________________________________________________________
dense_3 (Dense)              (None, 10)                1010      
=================================================================
Total params: 573,910
Trainable params: 573,910
Non-trainable params: 0
_________________________________________________________________++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
Epoch 1/5
3/3 [==============================] - 2s 119ms/step - loss: 2.4869 - accuracy: 0.2464
Epoch 2/5
3/3 [==============================] - 2s 514ms/step - loss: 3.5169 - accuracy: 0.3786 - val_loss: 1.5471 - val_accuracy: 0.5026
Epoch 3/5
3/3 [==============================] - 2s 116ms/step - loss: 1.4532 - accuracy: 0.5238
Epoch 4/5
3/3 [==============================] - 2s 273ms/step - loss: 0.9930 - accuracy: 0.6789 - val_loss: 0.6357 - val_accuracy: 0.8010
Epoch 5/5
3/3 [==============================] - 2s 112ms/step - loss: 0.6005 - accuracy: 0.8118
++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 24ms/step - loss: 0.4489 - accuracy: 0.8735
++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++================saved total model================
================del network================
================loaded model from file================++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 21ms/step - loss: 0.4505 - accuracy: 0.8729
++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++
tf.Tensor([9 0 9 ... 5 1 9], shape=(5000,), dtype=int64)
tf.Tensor([9 0 9 ... 5 1 9], shape=(5000,), dtype=int64)
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++Process finished with exit code 0

三、tf.saved_model.save()、tf.saved_model.load()、

保存为可以被其他语言(比如:C++)调用的格式
在这里插入图片描述

这篇关于深度学习:TensorFlow2构建、保存、加载神经网络模型【经典流程】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128904

相关文章

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

springboot启动流程过程

《springboot启动流程过程》SpringBoot简化了Spring框架的使用,通过创建`SpringApplication`对象,判断应用类型并设置初始化器和监听器,在`run`方法中,读取配... 目录springboot启动流程springboot程序启动入口1.创建SpringApplicat

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus