AI芯片:Edge TPU(谷歌出品)【在边缘(edge)设备上运行的“专用集成芯片”】【量化操作:Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位】

本文主要是介绍AI芯片:Edge TPU(谷歌出品)【在边缘(edge)设备上运行的“专用集成芯片”】【量化操作:Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

谷歌Edge TPU的价格不足1000人民币,远低于TPU。实际上,Edge TPU基本上就是机器学习的树莓派,它是一个用TPU在边缘进行推理的设备。

在这里插入图片描述

一、云vs边缘

1、边缘运行没有网络延迟

Edge TPU显然是在边缘(edge)运行的,但边缘是什么呢?为什么我们不选择在云上运行所有东西呢?

在这里插入图片描述
在云中运行代码意味着使用的CPU、GPU和TPU都是通过浏览器提供的。边缘与云相反,即在本地运行代码。在边缘运行代码的主要优点是没有网络延迟,由于物联网设备通常要频繁地生成数据,因此运行在边缘上的代码非常适合基于物联网的解决方案。

二、对比CPU、GPU,深度剖析TPU

TPU直接提供传递信息,减少延迟

TPU是类似于CPU或GPU的一种处理器。不过,它们之间存在很大的差异。

最大的区别是TPU是 ASIC(专用集成芯片)。ASIC经过优化,可以执行特定类型的应用程序。

对于TPU来说,它的特定任务就是执行神经网络中常用的乘积累加运算。

CPU和GPU并未针对特定类型的应用程序进行优化,因此它们不是ASIC。

下面我们分别看看 CPU、GPU和TPU如何使用各自的架构执行累积乘加运算:

1、在CPU上进行累积乘加运算

CPU通过从内存中读取每个输入和权重,将它们与其ALU (上图中的计算器) 相乘,然后将它们写回内存中,最后将所有相乘的值相加,从而执行乘积累加运算。

在这里插入图片描述

现代CPU通过其每个内核上的大量缓存、分支预测和高时钟频率得到增强。这些都有助于降低CPU的延迟。

2、GPU上的乘积累加运算(通过并行计算来大幅提高吞吐量,代价是延迟增加)

GPU的原理类似,但它有成千上万的ALU来执行计算。计算可以在所有ALU上并行进行,这被称为 SIMD (单指令流多数据流)。

在这里插入图片描述

一个很好的例子就是神经网络中的多重加法运算。

然而,GPU 并不使用上述那些能够降低延迟的功能。它还需要协调它的数千个 ALU,这进一步减少了延迟。

简而言之,GPU 通过并行计算来大幅提高吞吐量,代价是延迟增加。

或者换句话说:CPU是一个强大而训练有素的斯巴达战士,而GPU就像一支庞大的农民大军,但农民大军可以打败斯巴达战士,因为他们人多。

3、读取TPU上的乘加操作的权重

TPU的运作方式非常不同,它的ALU是直接相互连接的,不需要使用内存。

它们可以直接提供传递信息,从而大大减少延迟。

在这里插入图片描述

从上图中可以看出,神经网络的所有权重都被加载到ALU中。完成此操作后,神经网络的输入将加载到这些ALU中以执行乘积累加操作。

神经网络的所有输入并不是同时插入ALU的,而是从左到右逐步地插入,这样做是为了防止内存访问。因为ALU的输出将传播到下一个ALU,这都是通过脉动阵列 (systolic array) 的方式完成的,如下图所示。

使用脉动阵列执行乘加操作:

在这里插入图片描述
上图中的每个灰色单元表示TPU中的一个ALU (其中包含一个权重),在ALU 中,乘加操作是通过将ALU从顶部得到的输入乘以它的权重,然后将它与从左边得到的值相加。此操作的结果将传播到右侧,继续完成乘加操作。ALU从顶部得到的输入被传播到底部,用于为神经网络层中的下一个神经元执行乘加操作。

在每一行的末尾,可以找到层中每个神经元的乘加运算的结果,而不需要在运算之间使用内存,使用这种脉动阵列显著提高了Edge TPU的性能。

三、Edge TPU 推理速度超过其他处理器架构

1、使用量化和更少的内存操作,高速且环保

TPU 还有一个重要步骤是量化 (quantization)。

由于谷歌的Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位,这个过程叫做量化。

量化基本上是将更精确的32位数字近似到8位数字。量化过程如下图所示:

在这里插入图片描述

四舍五入会降低精度,然而,神经网络具有很好的泛化能力 (例如dropout)。因此在使用量化时不会受到很大的影响,如下图所示。

非量化模型与量化模型的精度:
在这里插入图片描述
量化的优势更为显著,它减少了计算量和内存需求,从而提高了计算的能源效率。

Edge TPU执行推理的速度比任何其他处理器架构都要快。它不仅速度更快,而且通过使用量化和更少的内存操作,从而更加环保。




参考资料:
从云到端,进阶的谷歌AI芯片Edge TPU到底有多快?

这篇关于AI芯片:Edge TPU(谷歌出品)【在边缘(edge)设备上运行的“专用集成芯片”】【量化操作:Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128717

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行