AI芯片:Edge TPU(谷歌出品)【在边缘(edge)设备上运行的“专用集成芯片”】【量化操作:Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位】

本文主要是介绍AI芯片:Edge TPU(谷歌出品)【在边缘(edge)设备上运行的“专用集成芯片”】【量化操作:Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

谷歌Edge TPU的价格不足1000人民币,远低于TPU。实际上,Edge TPU基本上就是机器学习的树莓派,它是一个用TPU在边缘进行推理的设备。

在这里插入图片描述

一、云vs边缘

1、边缘运行没有网络延迟

Edge TPU显然是在边缘(edge)运行的,但边缘是什么呢?为什么我们不选择在云上运行所有东西呢?

在这里插入图片描述
在云中运行代码意味着使用的CPU、GPU和TPU都是通过浏览器提供的。边缘与云相反,即在本地运行代码。在边缘运行代码的主要优点是没有网络延迟,由于物联网设备通常要频繁地生成数据,因此运行在边缘上的代码非常适合基于物联网的解决方案。

二、对比CPU、GPU,深度剖析TPU

TPU直接提供传递信息,减少延迟

TPU是类似于CPU或GPU的一种处理器。不过,它们之间存在很大的差异。

最大的区别是TPU是 ASIC(专用集成芯片)。ASIC经过优化,可以执行特定类型的应用程序。

对于TPU来说,它的特定任务就是执行神经网络中常用的乘积累加运算。

CPU和GPU并未针对特定类型的应用程序进行优化,因此它们不是ASIC。

下面我们分别看看 CPU、GPU和TPU如何使用各自的架构执行累积乘加运算:

1、在CPU上进行累积乘加运算

CPU通过从内存中读取每个输入和权重,将它们与其ALU (上图中的计算器) 相乘,然后将它们写回内存中,最后将所有相乘的值相加,从而执行乘积累加运算。

在这里插入图片描述

现代CPU通过其每个内核上的大量缓存、分支预测和高时钟频率得到增强。这些都有助于降低CPU的延迟。

2、GPU上的乘积累加运算(通过并行计算来大幅提高吞吐量,代价是延迟增加)

GPU的原理类似,但它有成千上万的ALU来执行计算。计算可以在所有ALU上并行进行,这被称为 SIMD (单指令流多数据流)。

在这里插入图片描述

一个很好的例子就是神经网络中的多重加法运算。

然而,GPU 并不使用上述那些能够降低延迟的功能。它还需要协调它的数千个 ALU,这进一步减少了延迟。

简而言之,GPU 通过并行计算来大幅提高吞吐量,代价是延迟增加。

或者换句话说:CPU是一个强大而训练有素的斯巴达战士,而GPU就像一支庞大的农民大军,但农民大军可以打败斯巴达战士,因为他们人多。

3、读取TPU上的乘加操作的权重

TPU的运作方式非常不同,它的ALU是直接相互连接的,不需要使用内存。

它们可以直接提供传递信息,从而大大减少延迟。

在这里插入图片描述

从上图中可以看出,神经网络的所有权重都被加载到ALU中。完成此操作后,神经网络的输入将加载到这些ALU中以执行乘积累加操作。

神经网络的所有输入并不是同时插入ALU的,而是从左到右逐步地插入,这样做是为了防止内存访问。因为ALU的输出将传播到下一个ALU,这都是通过脉动阵列 (systolic array) 的方式完成的,如下图所示。

使用脉动阵列执行乘加操作:

在这里插入图片描述
上图中的每个灰色单元表示TPU中的一个ALU (其中包含一个权重),在ALU 中,乘加操作是通过将ALU从顶部得到的输入乘以它的权重,然后将它与从左边得到的值相加。此操作的结果将传播到右侧,继续完成乘加操作。ALU从顶部得到的输入被传播到底部,用于为神经网络层中的下一个神经元执行乘加操作。

在每一行的末尾,可以找到层中每个神经元的乘加运算的结果,而不需要在运算之间使用内存,使用这种脉动阵列显著提高了Edge TPU的性能。

三、Edge TPU 推理速度超过其他处理器架构

1、使用量化和更少的内存操作,高速且环保

TPU 还有一个重要步骤是量化 (quantization)。

由于谷歌的Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位,这个过程叫做量化。

量化基本上是将更精确的32位数字近似到8位数字。量化过程如下图所示:

在这里插入图片描述

四舍五入会降低精度,然而,神经网络具有很好的泛化能力 (例如dropout)。因此在使用量化时不会受到很大的影响,如下图所示。

非量化模型与量化模型的精度:
在这里插入图片描述
量化的优势更为显著,它减少了计算量和内存需求,从而提高了计算的能源效率。

Edge TPU执行推理的速度比任何其他处理器架构都要快。它不仅速度更快,而且通过使用量化和更少的内存操作,从而更加环保。




参考资料:
从云到端,进阶的谷歌AI芯片Edge TPU到底有多快?

这篇关于AI芯片:Edge TPU(谷歌出品)【在边缘(edge)设备上运行的“专用集成芯片”】【量化操作:Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128717

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传