AI芯片:Edge TPU(谷歌出品)【在边缘(edge)设备上运行的“专用集成芯片”】【量化操作:Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位】

本文主要是介绍AI芯片:Edge TPU(谷歌出品)【在边缘(edge)设备上运行的“专用集成芯片”】【量化操作:Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

谷歌Edge TPU的价格不足1000人民币,远低于TPU。实际上,Edge TPU基本上就是机器学习的树莓派,它是一个用TPU在边缘进行推理的设备。

在这里插入图片描述

一、云vs边缘

1、边缘运行没有网络延迟

Edge TPU显然是在边缘(edge)运行的,但边缘是什么呢?为什么我们不选择在云上运行所有东西呢?

在这里插入图片描述
在云中运行代码意味着使用的CPU、GPU和TPU都是通过浏览器提供的。边缘与云相反,即在本地运行代码。在边缘运行代码的主要优点是没有网络延迟,由于物联网设备通常要频繁地生成数据,因此运行在边缘上的代码非常适合基于物联网的解决方案。

二、对比CPU、GPU,深度剖析TPU

TPU直接提供传递信息,减少延迟

TPU是类似于CPU或GPU的一种处理器。不过,它们之间存在很大的差异。

最大的区别是TPU是 ASIC(专用集成芯片)。ASIC经过优化,可以执行特定类型的应用程序。

对于TPU来说,它的特定任务就是执行神经网络中常用的乘积累加运算。

CPU和GPU并未针对特定类型的应用程序进行优化,因此它们不是ASIC。

下面我们分别看看 CPU、GPU和TPU如何使用各自的架构执行累积乘加运算:

1、在CPU上进行累积乘加运算

CPU通过从内存中读取每个输入和权重,将它们与其ALU (上图中的计算器) 相乘,然后将它们写回内存中,最后将所有相乘的值相加,从而执行乘积累加运算。

在这里插入图片描述

现代CPU通过其每个内核上的大量缓存、分支预测和高时钟频率得到增强。这些都有助于降低CPU的延迟。

2、GPU上的乘积累加运算(通过并行计算来大幅提高吞吐量,代价是延迟增加)

GPU的原理类似,但它有成千上万的ALU来执行计算。计算可以在所有ALU上并行进行,这被称为 SIMD (单指令流多数据流)。

在这里插入图片描述

一个很好的例子就是神经网络中的多重加法运算。

然而,GPU 并不使用上述那些能够降低延迟的功能。它还需要协调它的数千个 ALU,这进一步减少了延迟。

简而言之,GPU 通过并行计算来大幅提高吞吐量,代价是延迟增加。

或者换句话说:CPU是一个强大而训练有素的斯巴达战士,而GPU就像一支庞大的农民大军,但农民大军可以打败斯巴达战士,因为他们人多。

3、读取TPU上的乘加操作的权重

TPU的运作方式非常不同,它的ALU是直接相互连接的,不需要使用内存。

它们可以直接提供传递信息,从而大大减少延迟。

在这里插入图片描述

从上图中可以看出,神经网络的所有权重都被加载到ALU中。完成此操作后,神经网络的输入将加载到这些ALU中以执行乘积累加操作。

神经网络的所有输入并不是同时插入ALU的,而是从左到右逐步地插入,这样做是为了防止内存访问。因为ALU的输出将传播到下一个ALU,这都是通过脉动阵列 (systolic array) 的方式完成的,如下图所示。

使用脉动阵列执行乘加操作:

在这里插入图片描述
上图中的每个灰色单元表示TPU中的一个ALU (其中包含一个权重),在ALU 中,乘加操作是通过将ALU从顶部得到的输入乘以它的权重,然后将它与从左边得到的值相加。此操作的结果将传播到右侧,继续完成乘加操作。ALU从顶部得到的输入被传播到底部,用于为神经网络层中的下一个神经元执行乘加操作。

在每一行的末尾,可以找到层中每个神经元的乘加运算的结果,而不需要在运算之间使用内存,使用这种脉动阵列显著提高了Edge TPU的性能。

三、Edge TPU 推理速度超过其他处理器架构

1、使用量化和更少的内存操作,高速且环保

TPU 还有一个重要步骤是量化 (quantization)。

由于谷歌的Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位,这个过程叫做量化。

量化基本上是将更精确的32位数字近似到8位数字。量化过程如下图所示:

在这里插入图片描述

四舍五入会降低精度,然而,神经网络具有很好的泛化能力 (例如dropout)。因此在使用量化时不会受到很大的影响,如下图所示。

非量化模型与量化模型的精度:
在这里插入图片描述
量化的优势更为显著,它减少了计算量和内存需求,从而提高了计算的能源效率。

Edge TPU执行推理的速度比任何其他处理器架构都要快。它不仅速度更快,而且通过使用量化和更少的内存操作,从而更加环保。




参考资料:
从云到端,进阶的谷歌AI芯片Edge TPU到底有多快?

这篇关于AI芯片:Edge TPU(谷歌出品)【在边缘(edge)设备上运行的“专用集成芯片”】【量化操作:Edge TPU使用8 位权重进行计算,而通常使用32位权重。所以我们应该将权重从32位转换为8位】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128717

相关文章

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

C#中Trace.Assert的使用小结

《C#中Trace.Assert的使用小结》Trace.Assert是.NET中的运行时断言检查工具,用于验证代码中的关键条件,下面就来详细的介绍一下Trace.Assert的使用,具有一定的参考价值... 目录1、 什么是 Trace.Assert?1.1 最简单的比喻1.2 基本语法2、⚡ 工作原理3