[目标检测]RCNN算法详解

2024-09-02 01:32
文章标签 算法 详解 目标 检测 rcnn

本文主要是介绍[目标检测]RCNN算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载来自:http://blog.csdn.net/shenxiaolu1984/article/details/51066975

Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作。作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更带领团队获得终身成就奖,如今供职于Facebook旗下的FAIR。 
这篇文章思路简洁,在DPM方法多年平台期后,效果提高显著。包括本文在内的一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码

思想

本文解决了目标检测中的两个关键问题。

问题一:速度

经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。

问题二:训练集

经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数据库: 
一个较大的识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千万图像,1000类。 
一个较小的检测库(PASCAL VOC 2007):标定每张图片中,物体的类别和位置。一万图像,20类。 
本文使用识别库进行预训练,而后用检测库调优参数。最后在检测库上评测。

流程

RCNN算法分为4个步骤 
- 一张图像生成1K~2K个候选区域 
- 对每个候选区域,使用深度网络提取特征 
- 特征送入每一类的SVM 分类器,判别是否属于该类 
- 使用回归器精细修正候选框位置 
这里写图片描述

候选区域生成

使用了Selective Search1方法从一张图像生成约2000-3000个候选区域。基本思路如下: 
- 使用一种过分割手段,将图像分割成小区域 
- 查看现有小区域,合并可能性最高的两个区域。重复直到整张图像合并成一个区域位置 
- 输出所有曾经存在过的区域,所谓候选区域

候选区域生成和后续步骤相对独立,实际可以使用任意算法进行。

合并规则

优先合并以下四种区域: 
- 颜色(颜色直方图)相近的 
- 纹理(梯度直方图)相近的 
- 合并后总面积小的 
- 合并后,总面积在其BBOX中所占比例大的

第三条,保证合并操作的尺度较为均匀,避免一个大区域陆续“吃掉”其他小区域。

例:设有区域a-b-c-d-e-f-g-h。较好的合并方式是:ab-cd-ef-gh -> abcd-efgh -> abcdefgh。 
不好的合并方法是:ab-c-d-e-f-g-h ->abcd-e-f-g-h ->abcdef-gh -> abcdefgh。

第四条,保证合并后形状规则。

例:左图适于合并,右图不适于合并。 
这里写图片描述

上述四条规则只涉及区域的颜色直方图、纹理直方图、面积和位置。合并后的区域特征可以直接由子区域特征计算而来,速度较快。

多样化与后处理

为尽可能不遗漏候选区域,上述操作在多个颜色空间中同时进行(RGB,HSV,Lab等)。在一个颜色空间中,使用上述四条规则的不同组合进行合并。所有颜色空间与所有规则的全部结果,在去除重复后,都作为候选区域输出。

作者提供了Selective Search的源码,内含较多.p文件和.mex文件,难以细查具体实现。

特征提取

预处理

使用深度网络提取特征之前,首先把候选区域归一化成同一尺寸227×227。 
此处有一些细节可做变化:外扩的尺寸大小,形变时是否保持原比例,对框外区域直接截取还是补灰。会轻微影响性能。

预训练

网络结构 
基本借鉴Hinton 2012年在Image Net上的分类网络2,略作简化3。 
这里写图片描述 
此网络提取的特征为4096维,之后送入一个4096->1000的全连接(fc)层进行分类。 
学习率0.01。

训练数据 
使用ILVCR 2012的全部数据进行训练,输入一张图片,输出1000维的类别标号。

调优训练

网络结构 
同样使用上述网络,最后一层换成4096->21的全连接网络。 
学习率0.001,每一个batch包含32个正样本(属于20类)和96个背景。

训练数据 
使用PASCAL VOC 2007的训练集,输入一张图片,输出21维的类别标号,表示20类+背景。 
考察一个候选框和当前图像上所有标定框重叠面积最大的一个。如果重叠比例大于0.5,则认为此候选框为此标定的类别;否则认为此候选框为背景。

类别判断

分类器 
对每一类目标,使用一个线性SVM二类分类器进行判别。输入为深度网络输出的4096维特征,输出是否属于此类。 
由于负样本很多,使用hard negative mining方法。 
正样本 
本类的真值标定框。 
负样本 
考察每一个候选框,如果和本类所有标定框的重叠都小于0.3,认定其为负样本

位置精修

目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。 
回归器 
对每一类目标,使用一个线性脊回归器进行精修。正则项 λ=10000 。 
输入为深度网络pool5层的4096维特征,输出为xy方向的缩放和平移。 
训练样本 
判定为本类的候选框中,和真值重叠面积大于0.6的候选框。

结果

论文发表的2014年,DPM已经进入瓶颈期,即使使用复杂的特征和结构得到的提升也十分有限。本文将深度学习引入检测领域,一举将PASCAL VOC上的检测率从35.1%提升到53.7%。 
本文的前两个步骤(候选区域提取+特征提取)与待检测类别无关,可以在不同类之间共用。这两步在GPU上约需13秒。 
同时检测多类时,需要倍增的只有后两步骤(判别+精修),都是简单的线性运算,速度很快。这两步对于100K类别只需10秒。

以本论文为基础,后续的fast RCNN4和faster RCNN5在速度上有突飞猛进的发展,基本解决了PASCAL VOC上的目标检测问题。


  1. J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013. ↩
  2. A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012 ↩
  3. 所有层都是串行的。relu层为in-place操作,偏左绘制。 ↩
  4. Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. ↩
  5. Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in Neural Information Processing Systems. 2015. ↩

这篇关于[目标检测]RCNN算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128614

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费