[目标检测]RCNN算法详解

2024-09-02 01:32
文章标签 算法 详解 目标 检测 rcnn

本文主要是介绍[目标检测]RCNN算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载来自:http://blog.csdn.net/shenxiaolu1984/article/details/51066975

Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作。作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更带领团队获得终身成就奖,如今供职于Facebook旗下的FAIR。 
这篇文章思路简洁,在DPM方法多年平台期后,效果提高显著。包括本文在内的一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码

思想

本文解决了目标检测中的两个关键问题。

问题一:速度

经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。

问题二:训练集

经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数据库: 
一个较大的识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千万图像,1000类。 
一个较小的检测库(PASCAL VOC 2007):标定每张图片中,物体的类别和位置。一万图像,20类。 
本文使用识别库进行预训练,而后用检测库调优参数。最后在检测库上评测。

流程

RCNN算法分为4个步骤 
- 一张图像生成1K~2K个候选区域 
- 对每个候选区域,使用深度网络提取特征 
- 特征送入每一类的SVM 分类器,判别是否属于该类 
- 使用回归器精细修正候选框位置 
这里写图片描述

候选区域生成

使用了Selective Search1方法从一张图像生成约2000-3000个候选区域。基本思路如下: 
- 使用一种过分割手段,将图像分割成小区域 
- 查看现有小区域,合并可能性最高的两个区域。重复直到整张图像合并成一个区域位置 
- 输出所有曾经存在过的区域,所谓候选区域

候选区域生成和后续步骤相对独立,实际可以使用任意算法进行。

合并规则

优先合并以下四种区域: 
- 颜色(颜色直方图)相近的 
- 纹理(梯度直方图)相近的 
- 合并后总面积小的 
- 合并后,总面积在其BBOX中所占比例大的

第三条,保证合并操作的尺度较为均匀,避免一个大区域陆续“吃掉”其他小区域。

例:设有区域a-b-c-d-e-f-g-h。较好的合并方式是:ab-cd-ef-gh -> abcd-efgh -> abcdefgh。 
不好的合并方法是:ab-c-d-e-f-g-h ->abcd-e-f-g-h ->abcdef-gh -> abcdefgh。

第四条,保证合并后形状规则。

例:左图适于合并,右图不适于合并。 
这里写图片描述

上述四条规则只涉及区域的颜色直方图、纹理直方图、面积和位置。合并后的区域特征可以直接由子区域特征计算而来,速度较快。

多样化与后处理

为尽可能不遗漏候选区域,上述操作在多个颜色空间中同时进行(RGB,HSV,Lab等)。在一个颜色空间中,使用上述四条规则的不同组合进行合并。所有颜色空间与所有规则的全部结果,在去除重复后,都作为候选区域输出。

作者提供了Selective Search的源码,内含较多.p文件和.mex文件,难以细查具体实现。

特征提取

预处理

使用深度网络提取特征之前,首先把候选区域归一化成同一尺寸227×227。 
此处有一些细节可做变化:外扩的尺寸大小,形变时是否保持原比例,对框外区域直接截取还是补灰。会轻微影响性能。

预训练

网络结构 
基本借鉴Hinton 2012年在Image Net上的分类网络2,略作简化3。 
这里写图片描述 
此网络提取的特征为4096维,之后送入一个4096->1000的全连接(fc)层进行分类。 
学习率0.01。

训练数据 
使用ILVCR 2012的全部数据进行训练,输入一张图片,输出1000维的类别标号。

调优训练

网络结构 
同样使用上述网络,最后一层换成4096->21的全连接网络。 
学习率0.001,每一个batch包含32个正样本(属于20类)和96个背景。

训练数据 
使用PASCAL VOC 2007的训练集,输入一张图片,输出21维的类别标号,表示20类+背景。 
考察一个候选框和当前图像上所有标定框重叠面积最大的一个。如果重叠比例大于0.5,则认为此候选框为此标定的类别;否则认为此候选框为背景。

类别判断

分类器 
对每一类目标,使用一个线性SVM二类分类器进行判别。输入为深度网络输出的4096维特征,输出是否属于此类。 
由于负样本很多,使用hard negative mining方法。 
正样本 
本类的真值标定框。 
负样本 
考察每一个候选框,如果和本类所有标定框的重叠都小于0.3,认定其为负样本

位置精修

目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。 
回归器 
对每一类目标,使用一个线性脊回归器进行精修。正则项 λ=10000 。 
输入为深度网络pool5层的4096维特征,输出为xy方向的缩放和平移。 
训练样本 
判定为本类的候选框中,和真值重叠面积大于0.6的候选框。

结果

论文发表的2014年,DPM已经进入瓶颈期,即使使用复杂的特征和结构得到的提升也十分有限。本文将深度学习引入检测领域,一举将PASCAL VOC上的检测率从35.1%提升到53.7%。 
本文的前两个步骤(候选区域提取+特征提取)与待检测类别无关,可以在不同类之间共用。这两步在GPU上约需13秒。 
同时检测多类时,需要倍增的只有后两步骤(判别+精修),都是简单的线性运算,速度很快。这两步对于100K类别只需10秒。

以本论文为基础,后续的fast RCNN4和faster RCNN5在速度上有突飞猛进的发展,基本解决了PASCAL VOC上的目标检测问题。


  1. J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013. ↩
  2. A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012 ↩
  3. 所有层都是串行的。relu层为in-place操作,偏左绘制。 ↩
  4. Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. ↩
  5. Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in Neural Information Processing Systems. 2015. ↩

这篇关于[目标检测]RCNN算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128614

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML