并行 云架构 深度框架 sbatch slurm 深度学习 tensorflow环境从搭建到使用 conda

本文主要是介绍并行 云架构 深度框架 sbatch slurm 深度学习 tensorflow环境从搭建到使用 conda,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有一定的GPU云时常可用,一个节点4个GPU,我本人决定使用anaconda搭建tensorflow1.13并且使用。

anaconda是乙方提供的,使用bash命令可以加载

module load anaconda/3.7

加载后正常使用create命令建立环境

详情见我所有conda标志的博客,其实就是下面一句代码,看明白就不用翻了。

 下面这句代码就从零开始建立了一个tensorflow gpu的环境,版本是1.13,这一句代码,所有的依赖包括cuda,cudnn都保证安装好了。并且不会和任何人包括自己的环境冲突,虚拟环境这个技能真的超级有用且简单。不明白为什么很多人非要看十多篇长达5页的博客,折腾半个月环境,偏偏不愿意花五分钟试试我下面的代码。

conda create --name tenf13 tensorflow-gpu=1.13

上面建立的虚拟环境名字叫做tenf13,名字就是你叫他他就答应的。所以需要点名激活他,你不激活用不了,用完了,你再让他走。虚拟环境就是随叫随到这种的方便,所以可以建立10多种,随便是pytorch,tf,keras,还有各种版本,比如tf1,tf2。

激活环境

注意,必须使用source激活该环境。

source activate tenf13

这个环境就搭建完成了。使用时是这么使用的。

在你的bash代码中。我的实验配置都是用bash代码写得,因为方便。

#!/bin/bash#SBATCH -N 2
#SBATCH --ntasks-per-node=20
#SBATCH -A para
#SBATCH -p gpu
#SBATCH --gres=gpu:4export HOME=/home/tom/project
module load anaconda/3.7
source activate tenf13

实际上就最后两句有用的激活了环境。export HOME这句我觉着可能是定位anaconda的。这两句激活了环境,下面就可以写自己的代码了。比如

#!/bin/bash#SBATCH -N 2
#SBATCH --ntasks-per-node=20
#SBATCH -A para
#SBATCH -p gpu
#SBATCH --gres=gpu:4export HOME=/home/tom/project
module load anaconda/3.7
source activate tenf13python test.py

bash 代码也没什么神秘的,就是平时输入命令行的现在输入在一个文件里面而已。

tensorflow代码

之所以写这个是因为,在配置session的config时,需要特别注意一个参数。

否则会出错:CUB segmented reduce errortoo many resources requested for launch

参考:

https://devtalk.nvidia.com/default/topic/1038115/jetson-tx2/cub-segmented-reduce-errortoo-many-resources-requested-for-launch/

config = tf.ConfigProto()
config.gpu_options.allow_growth = Truesession = tf.Session(config=config, ...)

所以在我的实际代码中我是这么写的:

      # Soft placement allows placing on CPU ops without GPU implementation.session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)#LT add on cloud envsession_config.gpu_options.allow_growth = True

运行与监控

使用sbatch命令可以运行.sh文件。提交的进程会有一个唯一的id,比如会这么回复:

Submitted batch job 6712625

使用squeue可以查看正在运行的id

输出的内容在

slurm-6712625.out

使用vim即可看

 

 

这篇关于并行 云架构 深度框架 sbatch slurm 深度学习 tensorflow环境从搭建到使用 conda的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128400

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析