经典大语言模型解读(2):生成式预训练的先锋GPT-1

2024-09-01 22:44

本文主要是介绍经典大语言模型解读(2):生成式预训练的先锋GPT-1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:Improving Language Understanding by Generative Pre-Training

概述

现实世界中包含了大量的文本语料数据,然而,绝大多数语料都是无标签的。

为了充分利用这些无标签语料库,GPT1.0提出直接利用这些未标记的语料来进行生成式预训练,然后对每个特定任务进行判别式微调(在标注数据上),从而显著提升在这些任务上的性能。

文中涉及的主要NLP任务包括:

  • Textual Entailment:文本蕴含,即给定一个前提文本(premise),根据这个前提文本去推断假说文本(hypothesis)与前提文本之间的关系,关系包括蕴含和矛盾两种。蕴含关系指能从前提文本推断出假说文本,而矛盾关系则指前提文本与假锁文本相矛盾。

  • Question Answer:理解用户提出的问题并从文本或知识库中找到准确的答案。

  • Semantic Similarity Assessment:计算文本之间的相似度。

  • Document Classification:文本分类任务。

下面将对GPT-1的框架进行详细的介绍。

GPT框架

GPT-1遵循了Transformer架构,但模型仅基于Transformer的解码器构建

模型的训练流程分为两个阶段:预训练和微调。

无监督预训练

给定无监督token语料库 U = { u 1 , … , u n } \mathcal{U}=\left\{u_1, \ldots, u_n\right\} U={u1,,un},模型使用标准的语言建模目标来最大化如下似然函数:
L 1 ( U ) = ∑ i log ⁡ P ( u i ∣ u i − k , … , u i − 1 ; Θ ) L_1(\mathcal{U})=\sum_i \log P\left(u_i \mid u_{i-k}, \ldots, u_{i-1} ; \Theta\right) L1(U)=ilogP(uiuik,,ui1;Θ)

其中 k k k表示上下文窗口大小,条件概率 P P P通过具有参数 Θ \Theta Θ的神经网络来建模。

想了解最大似然估计的可以参考这篇文章:一文搞懂极大似然估计

在本文中,神经网络采用的是多层Transformer编码器,该模型对输入的上下文词馈送到神经网络中,然后通过线性层生成目标词的输出分布:
h 0 = U W e + W p h l = transformer_block ⁡ ( h l − 1 ) ∀ i ∈ [ 1 , n ] P ( u ) = softmax ⁡ ( h n W e T ) \begin{aligned} h_0 & =U W_e+W_p \\ h_l & =\operatorname{transformer\_ block}\left(h_{l-1}\right) \forall i \in[1, n] \\ P(u) & =\operatorname{softmax}\left(h_n W_e^T\right) \end{aligned} h0hlP(u)=UWe+Wp=transformer_block(hl1)i[1,n]=softmax(hnWeT)

其中 U = ( u − k , … , u − 1 ) U=\left(u_{-k}, \ldots, u_{-1}\right) U=(uk,,u1)表示词的上下文向量, n n n是层数, W e W_e We是词嵌入矩阵, W p W_p Wp是位置嵌入矩阵,两者都是可学习的。

有监督微调

在完成预训练后,GPT-1根据有监督的目标任务对预训练模型的参数进行调整。

假设存在带标签的数据集 C \mathcal{C} C,其中每个实例由一个输入词序列 ( x 1 , … , x m ) (x^1, \ldots, x^m) (x1,,xm)和相应的标签 y y y组成。将输入传入预训练模型来获取输入表示 h l m h_l^m hlm,然后将其输入一个额外的线性输出层预测 y y y W y W_y Wy表示该层的可学习参数:
P ( y ∣ x 1 , … , x m ) = softmax ⁡ ( h l m W y ) P\left(y \mid x^1, \ldots, x^m\right)=\operatorname{softmax}\left(h_l^m W_y\right) P(yx1,,xm)=softmax(hlmWy)

在学习的过程中需要最大化如下目标:
L 2 ( C ) = ∑ ( x , y ) log ⁡ P ( y ∣ x 1 , … , x m ) L_2(\mathcal{C})=\sum_{(x, y)} \log P\left(y \mid x^1, \ldots, x^m\right) L2(C)=(x,y)logP(yx1,,xm)

值得注意的是,作者发现将语言建模作为微调的辅助目标有助于学习,因为这可以改善有监督模型的泛化能力和加速收敛。于是,可以得到如下的优化目标:
L 3 ( C ) = L 2 ( C ) + λ ∗ L 1 ( C ) L_3(\mathcal{C})=L_2(\mathcal{C})+\lambda * L_1(\mathcal{C}) L3(C)=L2(C)+λL1(C)

其中 λ \lambda λ为权重。

可以看出,在微调的过程中,唯一需要学习的参数为 W y W_y Wy,这极大地降低了模型的训练成本,同时也能获取到足够好的效果。

特定任务的输入转换

由于NLP任务的广泛性,各类任务的输入差异显著。像文本分类之类的任务可以像上面描述的那样对模型进行微调,而对于像问答和文本蕴含之类的任务,则需要对输入进行修改,才能适配预训练模型进行有效微调。

下图中对GPT-1中的输入转换提供了一个可视化说明。所有转换都包括添加随机初始化的开始和结束标记 ( < s > , < e > ) (<s>,<e>) (<s>,<e>)

Input Transformation

Textual entailment

对于蕴含任务,用分隔符将前提和假设连接起来,中间用分隔符$($)$标记。

Similarity

对于相似性任务,由于两个句子没有固有的顺序,因此需要修改输入序列以包含两种可能的句子顺序(句子之间同样包含分隔符)。两个拼接的序列都独立输入到预训练模型中获取序列表示,之后进行相加后输入被馈送到线性输出层。

Question Answering and Commonsense Reasoning

对于知识问答和因果推理,输入中包含一个上下文文档 z z z、一个问题 q q q和一组可能的答案 { a k } \{a_k\} {ak}。GPT-1将将文档上下文和问题与每个可能的答案连接起来,并在其间添加分隔符,即$[z;q;$;a_k]$。每个凭借的序列同样都利用模型进行独立处理,然后通过Softmax层进行归一化,以产生可能答案的输出分布。

结语

以上便是本文的全部内容,若是觉得不错可以支持一下博主,你们的支持是博主更新的不竭动力。若是有任何问题也敬请批评指正。

这篇关于经典大语言模型解读(2):生成式预训练的先锋GPT-1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128261

相关文章

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

SpringCloud负载均衡spring-cloud-starter-loadbalancer解读

《SpringCloud负载均衡spring-cloud-starter-loadbalancer解读》:本文主要介绍SpringCloud负载均衡spring-cloud-starter-loa... 目录简述主要特点使用负载均衡算法1. 轮询负载均衡策略(Round Robin)2. 随机负载均衡策略(

解读spring.factories文件配置详情

《解读spring.factories文件配置详情》:本文主要介绍解读spring.factories文件配置详情,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录使用场景作用内部原理机制SPI机制Spring Factories 实现原理用法及配置spring.f

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图