亦菲喊你来学机器学习(18) --TF-IDF方法

2024-09-01 21:52
文章标签 学习 方法 机器 18 tf idf 来学

本文主要是介绍亦菲喊你来学机器学习(18) --TF-IDF方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • TF-IDF
    • 词频TF
    • 逆文档频率IDF
    • 计算TF-IDF值
  • 应用
  • 实验使用TF-IDF
    • 1. 收集数据
    • 2. 数据预处理
    • 3. 构建TF-IDF模型对象
    • 4. 转化稀疏矩阵
    • 5. 排序取值
    • 完整代码展示
  • jieba分词
  • 总结

TF-IDF

TF-IDF(Term Frequency-Inverse Document Frequency,词频-逆文档频率)是一种用于信息检索与文本挖掘的常用加权技术。TF-IDF是一种统计方法,用以评估一个字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

比如我们常用的百度软件,是如何做到输入搜索词就可以在数不清的文档中取出我们需要的呢?就是因为,他对每一篇文章都计算了文章内容单词的TF-IDF值,找出哪些词对文章是重要的,可以作为搜索词,定位到文章。

词频TF

TF(Term Frequency,词频),词频是指某个词在文档中出现的次数。对于某一特定文件里的词语t来说,它的重要性可以简单地通过它在该文件中出现的次数来衡量。但是,这种简单的统计方法有两个问题:

  1. 它没有考虑到文件长度。较长的文件可能会包含更多的词,因此单纯的词频统计会使得长文件中的词看起来更重要。
  2. 它没有考虑到词的重要性与它在语料库中出现的频率成反比这一事实。一些常用的词(如“的”,“是”,“在”等)可能在很多文档中频繁出现,但它们对文档的主题可能没有太大贡献。

在这里插入图片描述

逆文档频率IDF

IDF(Inverse Document Frequency,逆文档频率),逆文档频率是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。如果包含词条t的文档越少,IDF越大,则说明词条具有很好的类别区分能力。

在这里插入图片描述

计算TF-IDF值

在这里插入图片描述

应用

TF-IDF在文本挖掘和信息检索领域有着广泛的应用。例如,在搜索引擎中,搜索引擎可以根据用户输入的查询词,计算每个网页中这些查询词的TF-IDF值,然后根据这些值对网页进行排序,将最相关的网页排在前面。此外,TF-IDF还可以用于文本分类、文本聚类、关键词提取等任务中。

实验使用TF-IDF

目标:计算给予数据中,每篇文章名字中适合搜索的单词。

1. 收集数据

链接: 实验数据
提取码: 9unj

2. 数据预处理

读取文本内容:

inFile = open('task2_1.txt','r')
corpus = inFile.readlines()     #读取所有行数据,存在列表中

3. 构建TF-IDF模型对象

from sklearn.feature_extraction.text import TfidfVectorizervectorizer = TfidfVectorizer()  #构建TF-IDF模型对象
tfidf = vectorizer.fit_transform(corpus)    #fit_transform()拟合并调整数据的分布或范围
print(tfidf)
----------------(0, 1)	0.4489258246711445(0, 3)	0.620513986496383(0, 10)	0.3876833588747892(0, 5)	0.3876833588747892………………		…………

注意:拟合完之后会有一串数据(tfidf),其中列如"(0, 1) 0.4489258246711445"表示,在第1篇中,第2个词的TF-IDF值。但是!!值得注意的是,这里的第2个词并不是指在那篇文章中的第2个单词,而是在文本中所有单词中的第2个。那么,我们怎么知道文本中有多少词呢?

我们看看下一行get_feature_names_out()方法:

# get_feature_names_out()方法:获取特征名称,所有的单词
# 上述所说的第几个词,表示在这里面的索引获取的值
wordlist = vectorizer.get_feature_names_out()
print(wordlist)
--------------------
['and' 'document' 'final' 'first' 'has' 'is' 'line' 'one' 'second''several' 'the' 'third' 'this' 'words']

4. 转化稀疏矩阵

由于获得的tfidf数据观察起来有些困难,所以将其转化为稀疏矩阵(以wordlist为索引):

df = pd.DataFrame(tfidf.T.todense(),index=wordlist)

在这里插入图片描述

得到每篇文章,对应每个单词的TF-IDF值,没有该单词的为0。

5. 排序取值

步骤:获取矩阵中的每一列 —> 将每一篇的对所有单词的TF-IDF值给取出存入字典中 —> sorted方法排序(以TF-IDF值为基准)

for i in range(0,6):# 获取矩阵中的每一列featyrelist = df.iloc[:,i].to_list()# 将每一篇的对所有单词的TF-IDF值给取出存入字典中resdict = {}for j in range(0,len(wordlist)):resdict[wordlist[j]] = featyrelist[j]   #给字典创建键值对内容# resdict.items()获取字典中键值对所有内容,返回的是元组# key:以key为基准排序,lambda x: x[1]表示取返回元组中的第二个值,即TF-IDF值# reverse:排序方式,True表示降序resdict = sorted(resdict.items(),key=lambda x: x[1],reverse=True)print(resdict)

输出显示:

[('first', 0.620513986496383), ('document', 0.4489258246711445), ('is', 0.3876833588747892), ('the', 0.3876833588747892), ('this', 0.3359035918367382), ('and', 0.0), ('final', 0.0), ('has', 0.0), ('line', 0.0), ('one', 0.0), ('second', 0.0), ('several', 0.0), ('third', 0.0), ('words', 0.0)]
[('document', 0.670678043970947), ('second', 0.5652488019730092), ('is', 0.28959206902465257), ('the', 0.28959206902465257), ('this', 0.25091357141339277), ('and', 0.0), ('final', 0.0), ('first', 0.0), ('has', 0.0), ('line', 0.0), ('one', 0.0), ('several', 0.0), ('third', 0.0), ('words', 0.0)]
[('and', 0.5183362513321061), ('one', 0.5183362513321061), ('third', 0.5183362513321061), ('is', 0.2655575154689396), ('the', 0.2655575154689396), ('this', 0.23008912103979834), ('document', 0.0), ('final', 0.0), ('first', 0.0), ('has', 0.0), ('line', 0.0), ('second', 0.0), ('several', 0.0), ('words', 0.0)]
………………多余不展示

这样我们就知道了每篇文章对应每个单词的权重大小。

完整代码展示

from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pdinFile = open('task2_1.txt','r')
corpus = inFile.readlines()     #读取所有行数据,存在列表中vectorizer = TfidfVectorizer()  #构建TF-IDF模型对象
tfidf = vectorizer.fit_transform(corpus)    #fit_transform()拟合并调整数据的分布或范围
# 拟合完之后会有一串数据,表示,在第几篇中,第几个词的TF-IDF值
# 但是!!值得注意的是,这里的第几个词并不是指在那篇文章中的第几个,而是在文本中所有单词中的第几个
# 那么,我们怎么知道文本中有多少词呢?我们看看下一行get_feature_names_out()方法
print(tfidf)# get_feature_names_out()方法:获取特征名称,所有的单词
# 上述所说的第几个词,表示在这里面的索引获取的值
wordlist = vectorizer.get_feature_names_out()
print(wordlist)# 由于获得的tfidf数据观察起来有些困难,所以将其转化为稀疏矩阵(以wordlist为索引)
df = pd.DataFrame(tfidf.T.todense(),index=wordlist)
# print(df)words = []
for i in range(0,6):# 获取矩阵中的每一列featyrelist = df.iloc[:,i].to_list()# 将每一篇的对所有单词的TF-IDF值给取出存入字典中resdict = {}for j in range(0,len(wordlist)):resdict[wordlist[j]] = featyrelist[j]   #给字典创建键值对内容# resdict.items()获取字典中键值对所有内容,返回的是元组# key:以key为基准排序,lambda x: x[1]表示取返回元组中的第二个值,即TF-IDF值# reverse:排序方式,True表示降序resdict = sorted(resdict.items(),key=lambda x: x[1],reverse=True)words.append(resdict[0][0])	#获取TF-IDF值最高的单词print(resdict)
print('每篇文章对应的搜索单词为:',words)

jieba分词

但是,注意咯,我们实验使用的数据是英文的,它本身每个单词之间就已经被空格分开了。那假如我们要处理中文文章呢?所有单词都在一句话中连在一起,我们怎么得到每个单词呢?更别提得到每个单词的TF-IDF值了。

所以在这里,我们需要实验jieba库方法,对中文进行分词,库本身包含了中文大部分词海,他会判断哪些字比较适合合在一起作为一个单词,进行划分,从而起到分词作用。该方法我们下期介绍并尝试实验使用它!

总结

本篇介绍了:

  1. 什么是TF-IDF值?它有什么作用?
  2. 如何计算TF-IDF值
  3. 使用TF-IDF对象得到文章单词权重
  4. 下期介绍,使用jieba库进行中文分词

这篇关于亦菲喊你来学机器学习(18) --TF-IDF方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128143

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Java继承映射的三种使用方法示例

《Java继承映射的三种使用方法示例》继承在Java中扮演着重要的角色,它允许我们创建一个类(子类),该类继承另一个类(父类)的所有属性和方法,:本文主要介绍Java继承映射的三种使用方法示例,需... 目录前言一、单表继承(Single Table Inheritance)1-1、原理1-2、使用方法1-

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法