Datawhale X 李宏毅苹果书AI夏令营 学习笔记

2024-09-01 13:12

本文主要是介绍Datawhale X 李宏毅苹果书AI夏令营 学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习日志

日期: 2024年8月30日

今日学习内容:

今天,我继续学习了深度学习中的优化算法,并且着重理解了如何利用动量法RMSProp以及Adam等高级优化器来提高模型训练的效率和效果。

1. 动量法的理解:

  • 我学习了动量法如何通过在参数更新时考虑之前的梯度方向,使得模型能够更快地朝着全局最优解的方向前进。动量法可以有效防止模型陷入局部最小值,并能够在陡峭的下降方向上加快收敛速度。

2. RMSProp的原理:

  • RMSProp是一种可以根据不同参数和不同时间动态调整学习率的方法。在这部分学习中,我理解了如何利用均方根(RMS)来对每个参数的学习率进行自动调整,从而在陡峭的误差表面上采取较小步伐,在平坦的表面上则加大步伐。这种方法可以有效避免学习率过大或过小导致的训练不稳定问题。

3. Adam优化器的学习:

  • 我学习了Adam优化器的工作原理,理解了它是如何结合动量法和RMSProp的优点,通过自适应调整学习率来提高训练的效率和效果。Adam不仅在参数更新方向上具有动量,还能够动态调整学习率,使得它在实际应用中非常有效。通过Adam优化器,我了解到如何更好地在训练深度学习模型时使用合适的超参数配置。

4. 学习率调度:

  • 学习率调度也是今天学习的重要内容之一。通过学习,我了解到如何通过动态调整学习率,避免训练过程中的“爆炸”问题,并最终平滑地收敛到全局最优解。学习率调度可以通过学习率衰减和预热的方法来实现,以确保在训练过程中能够稳定且高效地优化模型参数。

5. 回顾与总结:

  • 今天的学习让我进一步理解了深度学习中的优化算法,特别是在梯度下降的基础上如何通过动量法、RMSProp以及Adam等方法来提高模型的训练效果。我认识到这些高级优化算法在处理复杂的误差表面时,能够通过动态调整步伐大小,使得模型更快地收敛到最优解。此外,学习率调度在训练过程中的重要性也得到了验证,它可以通过调整学习率的大小来避免训练过程中的波动和不稳定。

6. 实践与反思:

  • 在学习的过程中,我尝试应用这些优化算法来实际训练模型,发现通过调整学习率和使用动量,可以显著提高模型的收敛速度和最终的准确率。未来,我计划继续深入研究这些优化算法的细节,并将它们应用到更多的深度学习任务中,以进一步提升模型的性能。

这篇关于Datawhale X 李宏毅苹果书AI夏令营 学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127031

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss