基于Python的机器学习系列(19):K均值聚类(K-Means Clustering)

2024-09-01 10:36

本文主要是介绍基于Python的机器学习系列(19):K均值聚类(K-Means Clustering),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        K均值聚类(K-Means Clustering)是一种常用的无监督学习算法,用于将数据样本划分为若干个“簇”,使得同一簇内的数据点彼此相似,而不同簇的数据点之间差异较大。由于K均值不依赖于标签,因此它是一种无监督学习方法。常见的应用包括客户细分、图像分割和数据可视化等。

K均值算法

K均值算法的基本步骤如下:

  1. 定义簇的数量 k(需手动设定)。
  2. 初始化簇的质心,这些质心在数据空间中随机选择。
  3. 分配簇:对于每个数据点,计算其到每个簇质心的距离,并将其分配给最近的簇。
  4. 更新质心:重新计算每个簇的质心,即该簇内所有点的均值。
  5. 迭代:重复步骤3和4,直到簇的分配不再发生变化,或达到最大迭代次数。

选择K值

        选择K的值通常通过评估簇的“好坏”来实现。常用的方法是“肘部法则”(Elbow Method),其基本思路是找到误差平方和(Within-Cluster Sum of Squares, WCSS)与簇数量之间的关系图,选择拐点处的K值。拐点即“肘部”位置,代表增加簇的数量对减少误差的改进不再明显。

代码实现

        以下是K均值聚类的代码示例,展示了如何使用Python进行K均值聚类分析:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs# 生成示例数据
X, _ = make_blobs(n_samples=500, centers=4, cluster_std=0.60, random_state=0)# K均值聚类
kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)# 绘制结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='x')
plt.title('K-Means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()

结语

        K均值聚类与之前介绍的监督学习模型(如决策树、Bagging和随机森林)有显著不同。监督学习模型依赖于标签来训练模型并进行预测,而K均值聚类则通过无监督的方式探索数据的内在结构,无需标签信息。这使得K均值在处理没有标签的数据集时特别有用,比如在市场细分或图像分析中。然而,K均值的效果很大程度上依赖于簇数K的选择,这需要在实际应用中根据具体情况进行调优。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(19):K均值聚类(K-Means Clustering)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126691

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数