堆的时间复杂度分析

2024-09-01 03:04
文章标签 分析 复杂度 时间

本文主要是介绍堆的时间复杂度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,建堆的时间复杂度分析

堆是一颗完全二叉树,满二叉树又是一颗特殊的完全二叉树。

对于满二叉树来说,第一层的节点个数为2^0,第二层的节点个数为2^1,......所以可以得到第h层的节点个数为2^(h-1)。总结点个数N=2^0+2^1+...+2^(h-1)=2^h-1。那么就可以得出高度和节点个数的关系h=log(N+1)。

对于完全二叉树来说,最少情况下是上图中,最后一层只有一个节点,最多情况就是一个满二叉树。最少情况下,N=2^0+2^1+...+2^(h-2)+1=2^(h-1),同样高度和节点个数的关系:h=logN+1;

向上调整建堆和向下调整建堆的算法(内容在上一节中),最坏情况下都是要调整高度次,所以时间复杂度都是O(logN).

二,堆排序的时间复杂度分析

堆排序的大致思路:先将数据建堆(有4,),再将堆顶数据和最后一个数据交换,将除最后一个数据外的剩下数据重新建堆,反复执行,最大或最下的数据就会被放在后面,最后就得到一组有序数据。

//堆排序
void HeapSort(int* a, int n)
{//升序,建大堆//降序,建小堆//向下调整建堆//从第一个非叶子节点开始for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a, n, i);}int end = n - 1;while (end > 0){swap(&a[0], &a[end]);//交换AdjustDown(a, end, 0);//重新建堆end--;}
}
1,使用向下调整建堆

可能在只看代码时,会认为一个for循环,加上向下调整算法,时间复杂度是O(N*logN),其实不然,时间复杂度是O(N)。

向下调整建堆的思路:从第一个非叶子节点开始,使用向下调整算法,使它的左右子树都调成大堆或者小堆,依次循环。

 

时间复杂度分析: 

第一层有2^0个节点,每个节点最多向下调整h-1次。

第二层有2^1个节点,每个节点最多向下调整h-2次。

第三层有2^2个节点,每个节点最多向下调整h-3次。

......

第h-1层有2^(h-2)个节点,每个节点最多向下调整1次。

最多需要调整的次数

F(h)=2^0*(h-1)+2^1*(h-2)+2^2*(h-3)+...+2^(h-2)*1

2F(h)=2^1*(h-1)+2^2*(h-2)+2^3*(h-3)+...+2^(h-1)*1

相减得:F(h)=2^(h-1)+2^1+2^2+...+2^(h-2)-2^0*(h-1)

最后得:F(h)=2^h-1-h,再将h=logN代入:

F(h)=N-1-logN.(N的量级大于logN的量级)

所以向下建堆的时间复杂度为O(N)

2,使用向上调整建堆

向上调整建堆与向下相比,时间复杂度会更高。

//堆排序
void HeapSort(int* a, int n)
{//升序,建大堆//降序,建小堆//向上调整建堆for (int i = 1; i < n; i++){AdjustUp(a, i);}int end = n - 1;while (end > 0){swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

向上调整建堆的思路:将第一个数据看成是堆,从第二个数据开始,调用向上建堆算法,入一个数据,调用一次建堆。

时间复杂度分析:(从第二行开始)

第二行2^1个数据,每个数据向上调整1次

第三行2^2个数据,每个数据向上调整2次

......

第h行2^(h-1)个数据,每个数据向上调整h-1次

最多需要调整的次数:T(h)=2^1*1+2^2*2+...+2^(h-1)*(h-1)

                                    2T(h)=2^2*1+2^3*2+...+2^h*(h-1)

相减得:T(h)=2^h*(h-1)-2^1-(2^2+2^3+...+2^(h-1))

             T(h)=2^h*(h-1)-2^h+2

得:T(h)=(N+1)*(log(N+1)-1)-N+1

这个公式看最后一项就可以看出时间复杂度是O(N*logN),因为最后一行有2^(h-1)个节点,占整颗树节点的一半,还要调整h-1次。

3,比较

其实不难看出,向下建堆过程中,规律是:节点数量多的层*调整次数少,节点数量少得层*调整次数多。

向上建堆过程就相反,节点数量多的层*调整次数多,节点数量少得层*调整次数少。

所以向下调整建堆得时间复杂度更低。堆排序中用的也就是向下调整建堆。

4,重新建堆过程时间复杂度
while (end > 0)
{swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;
}

该过程是将建好的堆进行调整,交换堆顶数据和最后一个数据,然后将最后一个数据除外,重新形成一个堆,反复执行,使数据变得有序。

时间复杂度分析:

该过程每次都要调整,都是从第一个节点位置开始,N个节点,最多调整logN次,在加上一次循环,最多调整N*logN次。

该过程的时间复杂度是O(N*logN) 

堆排序的时间复杂度为:O(N*logN)+O(N), 其中N*logN的量级更大

总结:堆排序的时间复杂度为O(N*logN)

这篇关于堆的时间复杂度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125762

相关文章

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法

《golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法》:本文主要介绍golang获取当前时间、时间戳和时间字符串及它们之间的相互转换,本文通过实例代码给大家介绍的非常详细,感兴趣... 目录1、获取当前时间2、获取当前时间戳3、获取当前时间的字符串格式4、它们之间的相互转化上篇文章给大家介

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义