堆的时间复杂度分析

2024-09-01 03:04
文章标签 分析 复杂度 时间

本文主要是介绍堆的时间复杂度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,建堆的时间复杂度分析

堆是一颗完全二叉树,满二叉树又是一颗特殊的完全二叉树。

对于满二叉树来说,第一层的节点个数为2^0,第二层的节点个数为2^1,......所以可以得到第h层的节点个数为2^(h-1)。总结点个数N=2^0+2^1+...+2^(h-1)=2^h-1。那么就可以得出高度和节点个数的关系h=log(N+1)。

对于完全二叉树来说,最少情况下是上图中,最后一层只有一个节点,最多情况就是一个满二叉树。最少情况下,N=2^0+2^1+...+2^(h-2)+1=2^(h-1),同样高度和节点个数的关系:h=logN+1;

向上调整建堆和向下调整建堆的算法(内容在上一节中),最坏情况下都是要调整高度次,所以时间复杂度都是O(logN).

二,堆排序的时间复杂度分析

堆排序的大致思路:先将数据建堆(有4,),再将堆顶数据和最后一个数据交换,将除最后一个数据外的剩下数据重新建堆,反复执行,最大或最下的数据就会被放在后面,最后就得到一组有序数据。

//堆排序
void HeapSort(int* a, int n)
{//升序,建大堆//降序,建小堆//向下调整建堆//从第一个非叶子节点开始for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a, n, i);}int end = n - 1;while (end > 0){swap(&a[0], &a[end]);//交换AdjustDown(a, end, 0);//重新建堆end--;}
}
1,使用向下调整建堆

可能在只看代码时,会认为一个for循环,加上向下调整算法,时间复杂度是O(N*logN),其实不然,时间复杂度是O(N)。

向下调整建堆的思路:从第一个非叶子节点开始,使用向下调整算法,使它的左右子树都调成大堆或者小堆,依次循环。

 

时间复杂度分析: 

第一层有2^0个节点,每个节点最多向下调整h-1次。

第二层有2^1个节点,每个节点最多向下调整h-2次。

第三层有2^2个节点,每个节点最多向下调整h-3次。

......

第h-1层有2^(h-2)个节点,每个节点最多向下调整1次。

最多需要调整的次数

F(h)=2^0*(h-1)+2^1*(h-2)+2^2*(h-3)+...+2^(h-2)*1

2F(h)=2^1*(h-1)+2^2*(h-2)+2^3*(h-3)+...+2^(h-1)*1

相减得:F(h)=2^(h-1)+2^1+2^2+...+2^(h-2)-2^0*(h-1)

最后得:F(h)=2^h-1-h,再将h=logN代入:

F(h)=N-1-logN.(N的量级大于logN的量级)

所以向下建堆的时间复杂度为O(N)

2,使用向上调整建堆

向上调整建堆与向下相比,时间复杂度会更高。

//堆排序
void HeapSort(int* a, int n)
{//升序,建大堆//降序,建小堆//向上调整建堆for (int i = 1; i < n; i++){AdjustUp(a, i);}int end = n - 1;while (end > 0){swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

向上调整建堆的思路:将第一个数据看成是堆,从第二个数据开始,调用向上建堆算法,入一个数据,调用一次建堆。

时间复杂度分析:(从第二行开始)

第二行2^1个数据,每个数据向上调整1次

第三行2^2个数据,每个数据向上调整2次

......

第h行2^(h-1)个数据,每个数据向上调整h-1次

最多需要调整的次数:T(h)=2^1*1+2^2*2+...+2^(h-1)*(h-1)

                                    2T(h)=2^2*1+2^3*2+...+2^h*(h-1)

相减得:T(h)=2^h*(h-1)-2^1-(2^2+2^3+...+2^(h-1))

             T(h)=2^h*(h-1)-2^h+2

得:T(h)=(N+1)*(log(N+1)-1)-N+1

这个公式看最后一项就可以看出时间复杂度是O(N*logN),因为最后一行有2^(h-1)个节点,占整颗树节点的一半,还要调整h-1次。

3,比较

其实不难看出,向下建堆过程中,规律是:节点数量多的层*调整次数少,节点数量少得层*调整次数多。

向上建堆过程就相反,节点数量多的层*调整次数多,节点数量少得层*调整次数少。

所以向下调整建堆得时间复杂度更低。堆排序中用的也就是向下调整建堆。

4,重新建堆过程时间复杂度
while (end > 0)
{swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;
}

该过程是将建好的堆进行调整,交换堆顶数据和最后一个数据,然后将最后一个数据除外,重新形成一个堆,反复执行,使数据变得有序。

时间复杂度分析:

该过程每次都要调整,都是从第一个节点位置开始,N个节点,最多调整logN次,在加上一次循环,最多调整N*logN次。

该过程的时间复杂度是O(N*logN) 

堆排序的时间复杂度为:O(N*logN)+O(N), 其中N*logN的量级更大

总结:堆排序的时间复杂度为O(N*logN)

这篇关于堆的时间复杂度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125762

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g