本文主要是介绍Datawhale AI 夏令营 第五期 CV Task3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
活动简介
活动链接:Datawhale AI 夏令营(第五期)
以及CV里面的本次任务说明:Task 3 上分思路——数据集增强与模型预测
链接里的教程非常详细,主要是从三个方面(数据集增强、设置 YOLO 模型训练参数、设置 YOLO 模型预测行为和性能)来教我们在比赛中上分的技巧。
具体细节我就不赘述了,参看教程即可,这次我主要就Task3里的知识点做一下笔记,里面有些知识整理得真是非常清晰+详细,我要贴到博客里以便日后翻查(对以后参加比赛或者写论文提升模型性能十分有用)。
笔记
数据集增强
常见的增强技术包括翻转、旋转、缩放和颜色调整。多个库,例如Albumentations、Imgaug和TensorFlow的ImageDataGenerator,可以生成这些增强。
设置 YOLO 模型训练参数
通常,在初始训练时期,学习率从低开始,逐渐增加以稳定训练过程。但是,由于您的模型已经从以前的数据集中学习了一些特征,因此立即从更高的学习率开始可能更有益。在 YOLO 中绝大部分参数都可以使用默认值。
- imgsz: 训练时的目标图像尺寸,所有图像在此尺寸下缩放。
- save_period: 保存模型检查点的频率(周期数),-1 表示禁用。
- device: 用于训练的计算设备,可以是单个或多个 GPU,CPU 或苹果硅的 MPS。
- optimizer: 训练中使用的优化器,如 SGD、Adam 等,或 ‘auto’ 以根据模型配置自动选择。
- momentum: SGD 的动量因子或 Adam 优化器的 beta1。
- weight_decay: L2 正则化项。
- warmup_epochs: 学习率预热的周期数。
- warmup_momentum: 预热阶段的初始动量。
- warmup_bias_lr: 预热阶段偏置参数的学习率。
- box: 边界框损失在损失函数中的权重。
- cls: 分类损失在总损失函数中的权重。
- dfl: 分布焦点损失的权重。
在YOLOv5及其后续版本中,imgsz可以被设置为一个整数,用于训练和验证模式,表示将输入图像调整为正方形的尺寸,例如imgsz=640意味着图像将被调整为640x640像素。对于预测和导出模式,imgsz可以被设置为一个列表,包含宽度和高度,例如imgsz=[640, 480],表示图像将被调整为640像素宽和480像素高。较大的图像尺寸可能会提高模型的准确性,但会增加计算量和内存消耗。较小的图像尺寸可能会降低模型的准确性,但会提高计算速度和内存效率。因此,用户应根据实际场景需求及硬件资源限制,设置合适的输入图像尺寸
设置 YOLO 模型预测行为和性能
YOLO模型的预测结果通常包括多个组成部分,每个部分提供关于检测到的对象的不同信息。同时 YOLO 能够处理包括单独图像、图像集合、视频文件或实时视频流在内的多种数据源,也能够一次性处理多个图像或视频帧,进一步提高推理速度。
YOLOv8模型的使用者提供了灵活性,允许根据特定应用场景的需求调整模型的行为和性能。例如,如果需要减少误报,可以提高conf阈值;如果需要提高模型的执行速度,可以在支持的硬件上使用half精度;如果需要处理视频数据并希望加快处理速度,可以调整vid_stride来跳过某些帧。这些参数的适当配置对于优化模型的预测性能至关重要。
好啦!本次学习笔记就到这里啦,表述可能不是很专业,大家将就看啦~
本次夏令营呢就到此结束了,但我们的学习路程还远远没有结束,学无止境,我们一起加油!
这篇关于Datawhale AI 夏令营 第五期 CV Task3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!