麦穗检测计数-目标检测数据集(包括VOC格式、YOLO格式)

2024-08-31 22:36

本文主要是介绍麦穗检测计数-目标检测数据集(包括VOC格式、YOLO格式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

麦穗检测计数-目标检测数据集(包括VOC格式、YOLO格式)

数据集:
链接:https://pan.baidu.com/s/1N9tGbcssxvSM1W71q2YbNA?pwd=3nb3 
提取码:3nb3 

数据集信息介绍:
共有 3373张图像和一一对应的标注文件

标注文件格式提供了两种,包括VOC格式的xml文件和YOLO格式的txt文件。

标注的对象共有以下几种:
[‘Wheat’]

标注框的数量信息如下:(标注时一般是用英文标的,括号里提供标注对象的中文作为参考)

Wheat: 147792 (麦穗)

注:一张图里可能标注了多个对象,所以标注框总数可能会大于图片的总数。

完整的数据集,包括3个文件夹和一个txt文件:

在这里插入图片描述
all_images文件:存储数据集的图片,截图如下:
在这里插入图片描述

图片大小信息:
在这里插入图片描述
all_txt文件夹和classes.txt: 存储yolo格式的txt标注文件,数量和图像一样,每个标注文件一一对应。
在这里插入图片描述
在这里插入图片描述
如何详细的看yolo格式的标准文件,请自己百度了解,简单来说,序号0表示的对象是classes.txt中数组0号位置的名称。

all_xml文件:VOC格式的xml标注文件。数量和图像一样,每个标注文件一一对应。
在这里插入图片描述
标注结果:
在这里插入图片描述
如何详细的看VOC格式的标准文件,请自己百度了解。
两种格式的标注都是可以使用的,选择其中一种即可。
——————————————————————————————————————

写论文参考

题目:麦穗检测与计数数据集在农业信息化与深度学习中的应用研究
摘要
小麦是全球最重要的粮食作物之一,其产量与质量直接影响到全球粮食安全。麦穗的数量和质量是评估小麦产量的关键指标,传统的麦穗计数方法主要依赖人工,效率低且容易产生误差。随着农业信息化的发展和深度学习技术的进步,利用目标检测技术实现自动化的麦穗检测与计数成为可能。本文研究了麦穗检测与计数数据集在农业信息化和深度学习中的应用,探讨其在提高农业生产效率和精确管理中的作用,并展望其未来发展方向。

关键词
麦穗检测、目标检测、农业信息化、深度学习、智能农业

  1. 引言
    1.1 研究背景
    小麦是全球范围内种植面积广泛的主要粮食作物,其产量直接影响全球粮食供应链的稳定。麦穗的数量是评估小麦产量的重要指标,传统的麦穗计数方法主要依赖人工观察,这不仅耗费大量人力物力,而且受限于个人经验,导致结果的准确性难以保证。

1.2 研究目的
本研究旨在探索基于深度学习的麦穗检测与计数方法,利用麦穗检测与计数数据集,结合农业信息化手段,开发一种高效、准确、自动化的麦穗检测与计数系统,从而提升农业生产的智能化水平。

1.3 研究意义
农业信息化与深度学习技术的融合,将传统农业生产推向精准农业的新时代。这一技术不仅能够提高麦穗检测与计数的效率和精度,还能为农作物生长状态的实时监控和科学决策提供数据支持,助力农业生产的精细化管理和可持续发展。

  1. 文献综述
    2.1 农业信息化的发展现状
    农业信息化通过引入先进的技术手段,如物联网、大数据、卫星遥感等,正在深刻改变农业生产的模式。现代农业逐渐从经验驱动转向数据驱动,这使得农业生产的效率和科学性得到了显著提升。

2.2 深度学习在农业中的应用
近年来,深度学习技术在农业领域的应用日益广泛,特别是在图像识别和目标检测任务中。卷积神经网络(CNN)等深度学习模型能够从复杂的图像数据中提取特征,自动识别和分类农作物的生长状况、病虫害等,显著提高了农业生产的智能化水平。

2.3 麦穗检测与计数的研究现状
目前,针对麦穗检测与计数的研究主要集中在传统的图像处理和机器学习方法上。然而,这些方法在处理大规模数据和复杂场景时存在局限性。深度学习技术的引入,为麦穗检测与计数提供了新的解决方案,通过构建高质量的数据集和训练精确的目标检测模型,能够实现高效且准确的麦穗自动检测与计数。

  1. 研究方法
    3.1 数据集的构建与处理
    本研究利用一个包含多种麦穗生长阶段和不同环境条件的图像数据集,数据集中包括了多样化的麦穗形态和密度。为了提高模型的泛化能力,数据集经过了图像增强、标注校验和数据扩增等预处理步骤,以确保数据的多样性和模型训练的稳定性。

  2. 结果与讨论
    4.1 实验结果分析
    详细分析模型在麦穗检测与计数任务中的表现,包括不同生长阶段和不同密度下的检测精度、模型的推理时间和资源占用情况。对比分析不同模型的性能,讨论其在实际生产中的应用潜力和局限性。

4.2 结果讨论
基于实验结果,讨论模型在麦穗检测与计数中的优势与不足,提出改进策略,如结合多模态数据、引入上下文信息和优化计算资源的利用效率等。同时,探讨该技术在其他作物检测中的推广应用,以及在农业智能管理系统中的集成价值。

  1. 结论
    5.1 主要结论
    总结本文的研究成果,指出麦穗检测与计数数据集在农业信息化和深度学习中的重要作用,强调该技术在提升检测精度、减少人力投入和促进农业生产现代化方面的贡献。

5.2 研究展望
展望未来的研究方向,建议在实时监测、自动化农田管理和智能决策支持系统等领域进行进一步探索,以推动农业生产的智能化、精准化和可持续发展。

这篇关于麦穗检测计数-目标检测数据集(包括VOC格式、YOLO格式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125181

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav