【Python实战因果推断】73_图因果模型8

2024-08-31 17:04

本文主要是介绍【Python实战因果推断】73_图因果模型8,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Adjusting for Selection Bias

Conditioning on a Mediator


Adjusting for Selection Bias

不幸的是,纠正选择偏倚绝非易事。在我们一直在讨论的例子中,即使有随机对照试验,ATE也无法识别,仅仅是因为你无法在对那些回应了调查的人进行条件化后,关闭新功能与客户满意度之间的非因果关联流。为了取得一些进展,你需要做出进一步的假设,而这正是图形模型开始发挥作用的地方。它使你能够对这些假设非常明确和透明。

例如,你需要假设结果不会导致选择。在我们的例子中,这意味着客户满意度不会导致客户更可能或更不可能回答调查。相反,你将有一些其他可观察变量(或变量集合),它们既导致选择又影响结果。例如,唯一导致客户回应调查的因素可能是他们在应用程序中花费的时间和新功能。在这种情况下,治疗组和对照组之间的非因果关联通过在应用程序中花费的时间流动:

只有专家知识才能告诉你这是一个多么强烈的假设。但如果它是正确的,一旦你控制了在应用程序中花费的时间,新功能对满意度的影响就变得可识别了。

再一次,你在这里应用了调整公式。你只是将数据分割成由X定义的组,以便在这些组内,治疗组和对照组变得可比。然后,你可以简单地计算治疗组和对照组内部比较的加权平均值,使用每个组的大小作为权重。只是现在,你这样做时,同时对选择变量进行了条件化:

ATE=\sum_{x}\left\{(E[Y|T=1,R=1,X]-E[Y|T=0,R=1,X])P(X|R=1)\right\}

总的来说,为了调整选择偏倚,你必须调整导致选择的所有因素,同时还要假设结果或治疗既不直接导致选择,也不与选择共享隐藏的共同原因。例如,在以下图中,由于对S进行条件化打开了T和Y之间的非因果关联路径,存在选择偏倚:

你可以通过调整解释选择的可测量变量X3、X4和X5来关闭其中两条路径。然而,有两条路径你无法关闭(用虚线表示):Y->S<-T和T->S<-U->Y。这是因为治疗直接导致选择,而结果与选择共享一个隐藏的共同原因。你可以通过进一步对X2和X1进行条件化来减轻这条路径带来的偏倚,因为它们解释了U的一些变化,但这不会完全消除偏倚。这个图反映了在选择偏倚问题中你更可能遇到的更现实情况,就像我们刚刚作为例子使用的选择偏差。在这些情况下,你能做的最好的事情是对解释选择的变量进行条件化。这将减少偏倚,但不会完全消除它,因为如你所见,1)有导致选择的因素是你不知道或无法测量的,2)结果或治疗可能直接导致选择。

我也并不想给你错误的印象,以为仅仅控制导致选择的一切因素是一个好主意。在以下图中,对X进行条件化会打开一条非因果路径,Y->X<-T:

Conditioning on a Mediator

目前为止所讨论的选择偏倚是由不可避免地进入某个群体的选择引起的(你被迫对响应者群体进行条件化),但你也可以不经意间造成选择偏倚。例如,假设你从事人力资源工作,你想要查明是否存在性别歧视,即同等资质的男性和女性是否薪酬不同。为了进行这项分析,你可能会考虑控制资历等级;毕竟,你想要比较的是资质相同的员工,而资历似乎是一个很好的代理指标。换句话说,你认为如果同一职位的男性和女性薪资不同,你将有证据证明公司存在性别薪酬差距。

这种分析的问题在于,因果图可能看起来像这样:

资历等级是治疗(女性)与薪资之间的路径中的中介变量。直观上,女性和男性之间的薪资差异有一个直接原因(直接路径:女性->薪资)和一个间接原因,通过资历流动(间接路径:女性->资历->薪资)。这张图告诉你,女性遭受歧视的一种方式是她们升迁至更高资历的概率较低男性和女性之间的薪资差异部分是同一资历级别下的薪资差异,但也是资历级别的差异。简而言之,女性->资历->薪资路径也是治疗与结果之间的因果路径,你不应在分析中关闭它。如果你在控制资历的情况下比较男性和女性的薪资,你只会识别出直接歧视,即女性->薪资。

值得一提的是,对中介节点的后代进行条件化也会引起偏倚。这种选择并没有完全关闭因果路径,但部分阻塞了它:

这篇关于【Python实战因果推断】73_图因果模型8的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124475

相关文章

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Python实现文件下载、Cookie以及重定向的方法代码

《Python实现文件下载、Cookie以及重定向的方法代码》本文主要介绍了如何使用Python的requests模块进行网络请求操作,涵盖了从文件下载、Cookie处理到重定向与历史请求等多个方面,... 目录前言一、下载网络文件(一)基本步骤(二)分段下载大文件(三)常见问题二、requests模块处理

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用