大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务

本文主要是介绍大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(正在更新!)

章节内容

上节完成了如下的内容:

  • 基础环境规划
  • 集群规划
  • 下载安装
  • Standalone模式启动

在这里插入图片描述

YARN模式部署

在这里插入图片描述

环境变量

vim /etc/profile
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`

配置的结果如下图所示:
在这里插入图片描述
退出保存,并刷新环境变量。

yarn-site

cd /opt/servers/hadoop-2.9.2/etc/hadoop
vim yarn-site.xml

我们需要在原来的基础上,写入一些新的内容:

<!-- YRAN Flink 相关 -->
<property><name>yarn.nodemanager.pmem-check-enabled</name><value>false</value>
</property>
<property><name>yarn.nodemanager.vmem-check-enabled</name><value>false</value>
</property>
<property><name>yarn.resourcemanager.address</name><value>h123.wzk.icu:8032</value>
</property>
<property><name>yarn.resourcemanager.scheduler.address</name><value>h123.wzk.icu:8030</value>
</property>
<property><name>yarn.resourcemanager.resource-tracker.address</name><value>h123.wzk.icu:8031</value>
</property>

配置样式如下图所示:
在这里插入图片描述

同步配置

我们需要在:

  • h121 节点
  • h122 节点
  • h123 节点
    这三台机器上,都配置好一样的内容。

由于配置的过程基本重复,这里就跳过我配置的过程了,大致说一下需要配置的内容:

  • Flink环境
  • 环境变量profile
  • yarn-site
  • 停止Flink服务
  • 停止Hadoop集群等服务
  • 停止YARN集群等服务
  • 重启Hadoop集群
  • 重启YARN集群

我这里使用之前的 rsync-script 工具进行同步了:
在这里插入图片描述
漫长的等待之后,可以看到已经传输完毕了:
在这里插入图片描述

停止Hadoop

cd /opt/servers/hadoop-2.9.2/sbin
stop-all.sh

h121

在这里插入图片描述

停止YARN集群

h123

h123节点执行(ResourceManager节点在这里):
在这里插入图片描述

停止Flink

h121节点执行:

./stop-cluster.sh

在这里插入图片描述

停止结果

h121

(还剩下一个ZK的服务,非必须,想结束的话也可以结束掉)
在这里插入图片描述

h122

在这里插入图片描述

h123

在这里插入图片描述

启动Hadoop集群

一切确认没有问题之后,我们就可以重新启动了。

h121

start-all.sh

在这里插入图片描述

h122

在这里插入图片描述

h123

在这里插入图片描述

启动YARN集群

h123

为了防止YARN启动异常,我们需要到 h123 保证启动一次:

start-yarn.sh

在这里插入图片描述

申请资源

查看帮助

cd /opt/servers/flink-1.11.1/bin/
./yarn-session.sh -h

可以看到该脚本的说明如下:
在这里插入图片描述

测试脚本1 申请资源

./yarn-session.sh -n 2 -tm 800 -s 1 -d

上面的脚本的含义是:

  • -n 表示申请2个容器 这里就是指多少个TaskManager
  • -s 表示每个TaskManager的Slots数量
  • -tm 表示每个 TaskManager的内存大小
  • -d 表示后台的方式运行程序

脚本1 解释

上面的脚本会向YARN申请3个Container,即便写的是2个,因为ApplicationMaster和JobManager有一个额外的容器,一旦将Flink部署到YARN集群中,就会显示JobManger的连接详细信息。

2个Container启动TaskManager -n 2,每个TaskManager拥有1个TaskSlots -s 1,并且向每个TaskManager的Container申请800M的内存,以及一个 ApplicationMaster jobManager
如果不想让Flink YRAN客户端始终运行,那么也可以启动分离的YARN会话,被参数被称为-d或–detached,这种情况下,Flink YARN客户端只会将Flink提交给集群,然后关闭它自己。

整个过程大概是:yarn-session.sh(开辟资源) + Flink run(提交任务)

  • 使用Flink中的yarn-session,会启动两个必要服务JobManager和TaskManager
  • 客户端通过Flink run提交作业
  • yarn-session 会一直启动,不停的接收客户端提交的作业
  • 这种方式创建的Flink集群会独占资源
  • 如果有大量的 作业/任务 较小、工作时间短,适合使用这种方式,减少资源创建的时间。

脚本1 执行结果

可以看到一些日志内容:

2024-07-24 16:34:33,236 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/opt/servers/flink-1.11.1/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2024-07-24 16:34:33,381 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at h123.wzk.icu/124.223.26.81:8032
2024-07-24 16:34:33,724 INFO  org.apache.flink.runtime.util.config.memory.ProcessMemoryUtils [] - The derived from fraction jvm overhead memory (160.000mb (167772162 bytes)) is less than its min value 192.000mb (201326592 bytes), min value will be used instead
2024-07-24 16:34:33,734 INFO  org.apache.flink.runtime.util.config.memory.ProcessMemoryUtils [] - The derived from fraction jvm overhead memory (172.800mb (181193935 bytes)) is less than its min value 192.000mb (201326592 bytes), min value will be used instead
2024-07-24 16:34:34,210 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - The configured JobManager memory is 1600 MB. YARN will allocate 2048 MB to make up an integer multiple of its minimum allocation memory (1024 MB, configured via 'yarn.scheduler.minimum-allocation-mb'). The extra 448 MB may not be used by Flink.
2024-07-24 16:34:34,211 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - The configured TaskManager memory is 1728 MB. YARN will allocate 2048 MB to make up an integer multiple of its minimum allocation memory (1024 MB, configured via 'yarn.scheduler.minimum-allocation-mb'). The extra 320 MB may not be used by Flink.

运行过程如下图所示:
在这里插入图片描述

测试脚本2 提交运行

我们也可以直接在YARN上提交运行Flink作业(Run a Flink job on YARN)

./flink run -m yarn-cluster -yn 2 -yjm 1024 -ytm 1024 /opt/wzk//WordCount.jar

上述参数的一些解释:

  • -m JobManager 的地址
  • -yn TaskManager的个数

停止 yarn-cluster

yarn application -kill application_xxxxxxxxx

脚本2 解释

在这里插入图片描述

这篇关于大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123814

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Centos7安装Mongodb4

1、下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.1.tgz 2、解压 放到 /usr/local/ 目录下 tar -zxvf mongodb-linux-x86_64-rhel70-4.2.1.tgzmv mongodb-linux-x86_64-rhel70-4.2.1/

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd