INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】

本文主要是介绍INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.背景

2022年,I Ahmadianfar受到基于向量加权平均方法启发,提出了加权平均向量优化算法(weIghted meaN oF vectOrs, INFO)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

INFO 是一种修改过的加权平均方法,采用加权平均的思想来构建稳固的结构,并通过三个核心程序更新向量的位置:更新规则、向量组合和局部搜索。更新规则阶段基于基于平均的法则和加速收敛生成新向量,向量组合阶段结合获得的向量和更新规则以达到有希望的解决方案,局部搜索阶段帮助该算法逃离低精度的解决方案,并提高利用率和收敛性。

在这里插入图片描述

2.2算法过程

更新规则阶段

在INFO算法中,更新规则算子增加了种群在搜索过程中的多样性。这个算子使用向量的加权平均值来创建新的向量。基于平均的规则被应用于MeanRule:
M e a n R u l e = r × W M 1 l g + ( 1 − r ) × W M 2 l g (1) MeanRule=r\times WM1_l^g+(1-r)\times WM2_l^g\tag{1} MeanRule=r×WM1lg+(1r)×WM2lg(1)
其中各参数为:
W M 1 i g = δ × w 1 ( x a 1 − x a 2 ) + w 2 ( x a 1 − x a 3 ) + w 3 ( x a 2 − x a 3 ) w 1 + w 2 + w 3 + ε + ε × r a n d (2) WM 1_{i}^{g}=\delta\times\frac{w_{_1}(x_{_{a1}}-x_{_{a2}})+w_{_2}(x_{_{a1}}-x_{_{a3}})+w_{_3}(x_{_{a2}}-x_{_{a3}})}{w_{_1}+w_{_2}+w_{_3}+\varepsilon}+\varepsilon\times rand\tag{2} WM1ig=δ×w1+w2+w3+εw1(xa1xa2)+w2(xa1xa3)+w3(xa2xa3)+ε×rand(2)

W M 2 l g = δ × w 1 ( x b s − x b t ) + w 2 ( x b s − x w s ) + w 3 ( x b t − x w s ) w 1 + w 2 + w 3 + ε + ε × r a n d (3) WM 2_{l}^{g} = \delta\times\frac{w_{ 1}(x_{ bs} - x_{ bt} )+w_{ 2}(x_{ bs} - x_{ ws} )+w_{ 3}(x_{ bt} - x_{ ws} )}{w_{ 1} + w_{ 2} + w_{ 3} + \varepsilon}+\varepsilon\times rand\tag{3} WM2lg=δ×w1+w2+w3+εw1(xbsxbt)+w2(xbsxws)+w3(xbtxws)+ε×rand(3)
根据小波理论,WFs(波形函数)被用来根据两个原因调整MeanRule空间:(1)通过在优化过程中创建有效的振荡,帮助算法更有效地探索搜索空间并实现更好的解决方案;(2)通过控制引入WFs的扩张参数来生成微调,该参数用于调整WF的振幅。其中,δ是缩放因子,而β可以基于定义的指数函数进行变化:
δ = 2 β × r a n d − β β = 2 exp ⁡ ( − 4 × g M a x g ) (4) \begin{aligned}&\delta=2\beta\times rand-\beta\\&\beta=2\exp(-4\times\frac{g}{Maxg})\end{aligned}\tag{4} δ=2β×randββ=2exp(4×Maxgg)(4)
在更新规则操作中,还增加了收敛加速部分(CA),使用最佳向量在搜索空间中移动当前向量以提升全局搜索能力。在INFO算法中,假设最佳解决方案是最接近全局最优的解决方案。实际上,CA帮助向量朝更好的方向移动:
C A = r a n d n × ( x b s − x a 1 ) ( f ( x b s ) − f ( x a 1 ) + ε ) (5) CA=randn\times\frac{\left(x_{bs}-x_{a1}\right)}{\left(f\left(x_{bs}\right)-f\left(x_{a1}\right)+\varepsilon\right)}\tag{5} CA=randn×(f(xbs)f(xa1)+ε)(xbsxa1)(5)
计算新向量:
z l g = x l g + σ × M e a n R u l e + C A (6) z_{ l}^{ g}=x_{ l}^{ g}+\sigma\times MeanRule+CA\tag{6} zlg=xlg+σ×MeanRule+CA(6)

以rand<0.5进行切换:
在这里插入图片描述
α 可以根据方程中定义的指数函数进行改变:
σ = 2 α × r a n d − α α = c exp ⁡ ( − d × g M a x g ) (7) \begin{aligned}&\sigma=2\alpha\times rand-\alpha\\&\alpha=c\exp(-d\times\frac{g}{Maxg})\end{aligned}\tag{7} σ=2α×randαα=cexp(d×Maxgg)(7)

矢量组合阶段

为了增强INFO中种群的多样性,生成新向量:
在这里插入图片描述

局部搜索阶段

有效的局部搜索能力可以防止INFO算法被欺骗和陷入局部最优解,以进一步促进开发、搜索和收敛到全局最优解:
在这里插入图片描述
伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Ahmadianfar I, Heidari A A, Noshadian S, et al. INFO: An efficient optimization algorithm based on weighted mean of vectors[J]. Expert Systems with Applications, 2022, 195: 116516.

5.代码获取

这篇关于INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122815

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig