INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】

本文主要是介绍INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.背景

2022年,I Ahmadianfar受到基于向量加权平均方法启发,提出了加权平均向量优化算法(weIghted meaN oF vectOrs, INFO)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

INFO 是一种修改过的加权平均方法,采用加权平均的思想来构建稳固的结构,并通过三个核心程序更新向量的位置:更新规则、向量组合和局部搜索。更新规则阶段基于基于平均的法则和加速收敛生成新向量,向量组合阶段结合获得的向量和更新规则以达到有希望的解决方案,局部搜索阶段帮助该算法逃离低精度的解决方案,并提高利用率和收敛性。

在这里插入图片描述

2.2算法过程

更新规则阶段

在INFO算法中,更新规则算子增加了种群在搜索过程中的多样性。这个算子使用向量的加权平均值来创建新的向量。基于平均的规则被应用于MeanRule:
M e a n R u l e = r × W M 1 l g + ( 1 − r ) × W M 2 l g (1) MeanRule=r\times WM1_l^g+(1-r)\times WM2_l^g\tag{1} MeanRule=r×WM1lg+(1r)×WM2lg(1)
其中各参数为:
W M 1 i g = δ × w 1 ( x a 1 − x a 2 ) + w 2 ( x a 1 − x a 3 ) + w 3 ( x a 2 − x a 3 ) w 1 + w 2 + w 3 + ε + ε × r a n d (2) WM 1_{i}^{g}=\delta\times\frac{w_{_1}(x_{_{a1}}-x_{_{a2}})+w_{_2}(x_{_{a1}}-x_{_{a3}})+w_{_3}(x_{_{a2}}-x_{_{a3}})}{w_{_1}+w_{_2}+w_{_3}+\varepsilon}+\varepsilon\times rand\tag{2} WM1ig=δ×w1+w2+w3+εw1(xa1xa2)+w2(xa1xa3)+w3(xa2xa3)+ε×rand(2)

W M 2 l g = δ × w 1 ( x b s − x b t ) + w 2 ( x b s − x w s ) + w 3 ( x b t − x w s ) w 1 + w 2 + w 3 + ε + ε × r a n d (3) WM 2_{l}^{g} = \delta\times\frac{w_{ 1}(x_{ bs} - x_{ bt} )+w_{ 2}(x_{ bs} - x_{ ws} )+w_{ 3}(x_{ bt} - x_{ ws} )}{w_{ 1} + w_{ 2} + w_{ 3} + \varepsilon}+\varepsilon\times rand\tag{3} WM2lg=δ×w1+w2+w3+εw1(xbsxbt)+w2(xbsxws)+w3(xbtxws)+ε×rand(3)
根据小波理论,WFs(波形函数)被用来根据两个原因调整MeanRule空间:(1)通过在优化过程中创建有效的振荡,帮助算法更有效地探索搜索空间并实现更好的解决方案;(2)通过控制引入WFs的扩张参数来生成微调,该参数用于调整WF的振幅。其中,δ是缩放因子,而β可以基于定义的指数函数进行变化:
δ = 2 β × r a n d − β β = 2 exp ⁡ ( − 4 × g M a x g ) (4) \begin{aligned}&\delta=2\beta\times rand-\beta\\&\beta=2\exp(-4\times\frac{g}{Maxg})\end{aligned}\tag{4} δ=2β×randββ=2exp(4×Maxgg)(4)
在更新规则操作中,还增加了收敛加速部分(CA),使用最佳向量在搜索空间中移动当前向量以提升全局搜索能力。在INFO算法中,假设最佳解决方案是最接近全局最优的解决方案。实际上,CA帮助向量朝更好的方向移动:
C A = r a n d n × ( x b s − x a 1 ) ( f ( x b s ) − f ( x a 1 ) + ε ) (5) CA=randn\times\frac{\left(x_{bs}-x_{a1}\right)}{\left(f\left(x_{bs}\right)-f\left(x_{a1}\right)+\varepsilon\right)}\tag{5} CA=randn×(f(xbs)f(xa1)+ε)(xbsxa1)(5)
计算新向量:
z l g = x l g + σ × M e a n R u l e + C A (6) z_{ l}^{ g}=x_{ l}^{ g}+\sigma\times MeanRule+CA\tag{6} zlg=xlg+σ×MeanRule+CA(6)

以rand<0.5进行切换:
在这里插入图片描述
α 可以根据方程中定义的指数函数进行改变:
σ = 2 α × r a n d − α α = c exp ⁡ ( − d × g M a x g ) (7) \begin{aligned}&\sigma=2\alpha\times rand-\alpha\\&\alpha=c\exp(-d\times\frac{g}{Maxg})\end{aligned}\tag{7} σ=2α×randαα=cexp(d×Maxgg)(7)

矢量组合阶段

为了增强INFO中种群的多样性,生成新向量:
在这里插入图片描述

局部搜索阶段

有效的局部搜索能力可以防止INFO算法被欺骗和陷入局部最优解,以进一步促进开发、搜索和收敛到全局最优解:
在这里插入图片描述
伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Ahmadianfar I, Heidari A A, Noshadian S, et al. INFO: An efficient optimization algorithm based on weighted mean of vectors[J]. Expert Systems with Applications, 2022, 195: 116516.

5.代码获取

这篇关于INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122815

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL 获取字符串长度及注意事项

《MySQL获取字符串长度及注意事项》本文通过实例代码给大家介绍MySQL获取字符串长度及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 获取字符串长度详解 核心长度函数对比⚠️ 六大关键注意事项1. 字符编码决定字节长度2

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

python3如何找到字典的下标index、获取list中指定元素的位置索引

《python3如何找到字典的下标index、获取list中指定元素的位置索引》:本文主要介绍python3如何找到字典的下标index、获取list中指定元素的位置索引问题,具有很好的参考价值,... 目录enumerate()找到字典的下标 index获取list中指定元素的位置索引总结enumerat