INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】

本文主要是介绍INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.背景

2022年,I Ahmadianfar受到基于向量加权平均方法启发,提出了加权平均向量优化算法(weIghted meaN oF vectOrs, INFO)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

INFO 是一种修改过的加权平均方法,采用加权平均的思想来构建稳固的结构,并通过三个核心程序更新向量的位置:更新规则、向量组合和局部搜索。更新规则阶段基于基于平均的法则和加速收敛生成新向量,向量组合阶段结合获得的向量和更新规则以达到有希望的解决方案,局部搜索阶段帮助该算法逃离低精度的解决方案,并提高利用率和收敛性。

在这里插入图片描述

2.2算法过程

更新规则阶段

在INFO算法中,更新规则算子增加了种群在搜索过程中的多样性。这个算子使用向量的加权平均值来创建新的向量。基于平均的规则被应用于MeanRule:
M e a n R u l e = r × W M 1 l g + ( 1 − r ) × W M 2 l g (1) MeanRule=r\times WM1_l^g+(1-r)\times WM2_l^g\tag{1} MeanRule=r×WM1lg+(1r)×WM2lg(1)
其中各参数为:
W M 1 i g = δ × w 1 ( x a 1 − x a 2 ) + w 2 ( x a 1 − x a 3 ) + w 3 ( x a 2 − x a 3 ) w 1 + w 2 + w 3 + ε + ε × r a n d (2) WM 1_{i}^{g}=\delta\times\frac{w_{_1}(x_{_{a1}}-x_{_{a2}})+w_{_2}(x_{_{a1}}-x_{_{a3}})+w_{_3}(x_{_{a2}}-x_{_{a3}})}{w_{_1}+w_{_2}+w_{_3}+\varepsilon}+\varepsilon\times rand\tag{2} WM1ig=δ×w1+w2+w3+εw1(xa1xa2)+w2(xa1xa3)+w3(xa2xa3)+ε×rand(2)

W M 2 l g = δ × w 1 ( x b s − x b t ) + w 2 ( x b s − x w s ) + w 3 ( x b t − x w s ) w 1 + w 2 + w 3 + ε + ε × r a n d (3) WM 2_{l}^{g} = \delta\times\frac{w_{ 1}(x_{ bs} - x_{ bt} )+w_{ 2}(x_{ bs} - x_{ ws} )+w_{ 3}(x_{ bt} - x_{ ws} )}{w_{ 1} + w_{ 2} + w_{ 3} + \varepsilon}+\varepsilon\times rand\tag{3} WM2lg=δ×w1+w2+w3+εw1(xbsxbt)+w2(xbsxws)+w3(xbtxws)+ε×rand(3)
根据小波理论,WFs(波形函数)被用来根据两个原因调整MeanRule空间:(1)通过在优化过程中创建有效的振荡,帮助算法更有效地探索搜索空间并实现更好的解决方案;(2)通过控制引入WFs的扩张参数来生成微调,该参数用于调整WF的振幅。其中,δ是缩放因子,而β可以基于定义的指数函数进行变化:
δ = 2 β × r a n d − β β = 2 exp ⁡ ( − 4 × g M a x g ) (4) \begin{aligned}&\delta=2\beta\times rand-\beta\\&\beta=2\exp(-4\times\frac{g}{Maxg})\end{aligned}\tag{4} δ=2β×randββ=2exp(4×Maxgg)(4)
在更新规则操作中,还增加了收敛加速部分(CA),使用最佳向量在搜索空间中移动当前向量以提升全局搜索能力。在INFO算法中,假设最佳解决方案是最接近全局最优的解决方案。实际上,CA帮助向量朝更好的方向移动:
C A = r a n d n × ( x b s − x a 1 ) ( f ( x b s ) − f ( x a 1 ) + ε ) (5) CA=randn\times\frac{\left(x_{bs}-x_{a1}\right)}{\left(f\left(x_{bs}\right)-f\left(x_{a1}\right)+\varepsilon\right)}\tag{5} CA=randn×(f(xbs)f(xa1)+ε)(xbsxa1)(5)
计算新向量:
z l g = x l g + σ × M e a n R u l e + C A (6) z_{ l}^{ g}=x_{ l}^{ g}+\sigma\times MeanRule+CA\tag{6} zlg=xlg+σ×MeanRule+CA(6)

以rand<0.5进行切换:
在这里插入图片描述
α 可以根据方程中定义的指数函数进行改变:
σ = 2 α × r a n d − α α = c exp ⁡ ( − d × g M a x g ) (7) \begin{aligned}&\sigma=2\alpha\times rand-\alpha\\&\alpha=c\exp(-d\times\frac{g}{Maxg})\end{aligned}\tag{7} σ=2α×randαα=cexp(d×Maxgg)(7)

矢量组合阶段

为了增强INFO中种群的多样性,生成新向量:
在这里插入图片描述

局部搜索阶段

有效的局部搜索能力可以防止INFO算法被欺骗和陷入局部最优解,以进一步促进开发、搜索和收敛到全局最优解:
在这里插入图片描述
伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Ahmadianfar I, Heidari A A, Noshadian S, et al. INFO: An efficient optimization algorithm based on weighted mean of vectors[J]. Expert Systems with Applications, 2022, 195: 116516.

5.代码获取

这篇关于INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122815

相关文章

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

C#实现WinForm控件焦点的获取与失去

《C#实现WinForm控件焦点的获取与失去》在一个数据输入表单中,当用户从一个文本框切换到另一个文本框时,需要准确地判断焦点的转移,以便进行数据验证、提示信息显示等操作,本文将探讨Winform控件... 目录前言获取焦点改变TabIndex属性值调用Focus方法失去焦点总结最后前言在一个数据输入表单

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出